In this paper we introduce and study a family An(q) of abelian subgroups of GLn(q) covering every element of GLn(q). We show that An(q) contains all the centralizers of cyclic matrices and equality holds if q > n. For q > 2, we obtain an infinite product expression for a probabilistic generating function for |An(q)|. This leads to upper and lower bounds which show in particular that c1q-n ≤ |A n(q)| |GLn(q)| ≤ c2q-n for explicit positive constants c1, c2. We also prove that similar upper and lower bounds hold for q = 2. A subset X of a finite group G is said to be pairwise non-commuting if xy yx for distinct elements x,y in X. As an application of our results on A n(q), we prove lower and upper bounds for the maximum size of a pairwise non-commuting subset of GLn(q). (This is the clique number of the non-commuting graph.) Moreover, in the case where q > n, we give an explicit formula for the maximum size of a pairwise non-commuting set. © 2011 Springer Science+Business Media, LLC.
Azad, A., Iranmanesh, M., Praeger, C., & Spiga, P. (2011). Abelian coverings of finite general linear groups and an application to their non-commuting graphs. JOURNAL OF ALGEBRAIC COMBINATORICS, 34(4), 683-710.
Citazione: | Azad, A., Iranmanesh, M., Praeger, C., & Spiga, P. (2011). Abelian coverings of finite general linear groups and an application to their non-commuting graphs. JOURNAL OF ALGEBRAIC COMBINATORICS, 34(4), 683-710. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | Si |
Titolo: | Abelian coverings of finite general linear groups and an application to their non-commuting graphs |
Autori: | Azad, A; Iranmanesh, M; Praeger, C; Spiga, P |
Autori: | SPIGA, PABLO (Ultimo) |
Data di pubblicazione: | 2011 |
Lingua: | English |
Rivista: | JOURNAL OF ALGEBRAIC COMBINATORICS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10801-011-0288-2 |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
art%3A10.1007%2Fs10801-011-0288-2.pdf | N/A | Administrator Richiedi una copia |