The new dibranched, heterocyclic "push-pull" chromophores bis{1-(pyridin-4-yl)-2-[2-(N-methyl-pyrrol-5-yl)]ethane}methane (1), 1-(pyrid-4-yl)-2-(N-methyl-5-formylpyrrol-2-yl)ethylene (2), {1-(N-methylpyridinium-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane} {(1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}-methane (3), N-methyl-2-[1-(N-methylpyrid-4-yl)ethen-2-yl]-5-[pyrid-4-yl]ethen-2-yl]pyrrole iodide (4), bis-{1-(N-methyl-4-pyridinio)-2-[2-(N-methylpyrrol-5-yl)]ethane} methane iodide (5), and N-methyl-2,5-[1-(N-methylpyrid-4-yl)ethen-2-yl]pyrrole iodide (6) have been synthesized and characterized. The neutral (1 and 2) and monomethyl salts (3 and 4) undergo chemisorptive reaction with iodobenzyl-functionalized surfaces to afford chromophore monolayers SA-1/SA-2 and SA-3/SA-4, respectively. Molecular structures and other physicochemical properties have been defined by <sup>1</sup>H NMR, optical spectroscopy, and XRD. Thin-film characterization by a variety of techniques (optical spectroscopy, specular X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and angle-dependent polarized second harmonic generation) underscore the importance of the chromophore molecular architecture as well as film growth method on film microstructure and optical/electrooptic response. © 2006 American Chemical Society.

Facchetti, A., Beverina, L., Van der Boom, M., Dutta, P., Evmenenko, G., Shukla, A., et al. (2006). Strategies for Electrooptic Film Fabrication. Influence of Pyrrole-Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 128(6), 2142-2153 [10.1021/ja057556c].

Strategies for Electrooptic Film Fabrication. Influence of Pyrrole-Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response

BEVERINA, LUCA;PAGANI, GIORGIO ALBERTO;
2006

Abstract

The new dibranched, heterocyclic "push-pull" chromophores bis{1-(pyridin-4-yl)-2-[2-(N-methyl-pyrrol-5-yl)]ethane}methane (1), 1-(pyrid-4-yl)-2-(N-methyl-5-formylpyrrol-2-yl)ethylene (2), {1-(N-methylpyridinium-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane} {(1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}-methane (3), N-methyl-2-[1-(N-methylpyrid-4-yl)ethen-2-yl]-5-[pyrid-4-yl]ethen-2-yl]pyrrole iodide (4), bis-{1-(N-methyl-4-pyridinio)-2-[2-(N-methylpyrrol-5-yl)]ethane} methane iodide (5), and N-methyl-2,5-[1-(N-methylpyrid-4-yl)ethen-2-yl]pyrrole iodide (6) have been synthesized and characterized. The neutral (1 and 2) and monomethyl salts (3 and 4) undergo chemisorptive reaction with iodobenzyl-functionalized surfaces to afford chromophore monolayers SA-1/SA-2 and SA-3/SA-4, respectively. Molecular structures and other physicochemical properties have been defined by 1H NMR, optical spectroscopy, and XRD. Thin-film characterization by a variety of techniques (optical spectroscopy, specular X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and angle-dependent polarized second harmonic generation) underscore the importance of the chromophore molecular architecture as well as film growth method on film microstructure and optical/electrooptic response. © 2006 American Chemical Society.
Articolo in rivista - Articolo scientifico
nonlinear optics
English
2006
128
6
2142
2153
none
Facchetti, A., Beverina, L., Van der Boom, M., Dutta, P., Evmenenko, G., Shukla, A., et al. (2006). Strategies for Electrooptic Film Fabrication. Influence of Pyrrole-Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 128(6), 2142-2153 [10.1021/ja057556c].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/13267
Citazioni
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 73
Social impact