The complexes Fe2(pdt)(CNR)6 (pdt2- = CH2(CH2S-)2) were prepared by thermal substitution of the hexacarbonyl complex with the isocyanides RNC for R = C6H4-4-OMe (1), C6H4-4-Cl (2), Me (3). These complexes represent electron-rich analogues of the parent Fe2(pdt)(CO)6. Unlike most substituted derivatives of Fe2(pdt)(CO)6, these isocyanide complexes are sterically unencumbered and have the same idealized symmetry as the parent hexacarbonyl derivatives. Like the hexacarbonyls, the stereodynamics of 1-3 involve both turnstile rotation of the Fe(CNR)3 as well as the inversion of the chair conformation of the pdt ligand. Structural studies indicate that the basal isocyanide has nonlinear CNC bonds and short Fe-C distances, indicating that they engage in stronger Fe-C π-backbonding than the apical ligands. Cyclic voltammetry reveals that these new complexes are far more reducing than the hexacarbonyls, although the redox behavior is complex. Estimated reduction potentials are E1/2 ≈ -0.6 ([2]+/0), -0.7 ([1]+/0), and -1.25 ([3]+/0). According to DFT calculations, the rotated isomer of 3 is only 2.2 kcal/mol higher in energy than the crystallographically observed unrotated structure. The effects of rotated versus unrotated structure and of solvent coordination (THF, MeCN) on redox potentials were assessed computationally. These factors shift the redox couple by as much as 0.25 V, usually less. Compounds 1 and 2 protonate with strong acids to give the expected μ-hydrides [H1]+ and [H2]+. In contrast, 3 protonates with [HNEt3]BArF4 (pKaMeCN = 18.7) to give the aminocarbyne [Fe2(pdt)(CNMe)5(μ-CN(H)Me)]+ ([3H]+). According to NMR measurements and DFT calculations, this species adopts an unsymmetrical, rotated structure. DFT calculations further indicate that the previously described carbyne complex [Fe2(SMe)2(CO)3(PMe3)2(CCF3)]+ also adopts a rotated structure with a bridging carbyne ligand. Complex [3H]+ reversibly adds MeNC to give [Fe2(pdt)(CNR)6(μ-CN(H)Me)]+ ([3H(CNMe)]+). Near room temperature, [3H]+ isomerizes to the hydride [(μ-H)Fe2(pdt)(CNMe)6]+ ([H3]+) via a first-order pathway.

Zhou, X., Barton, B., Chambers, G., Rauchfuss, T., Arrigoni, F., Zampella, G. (2016). Preparation and Protonation of Fe2(pdt)(CNR)6, Electron-Rich Analogues of Fe2(pdt)(CO)6. INORGANIC CHEMISTRY, 55(7), 3401-3412 [10.1021/acs.inorgchem.5b02789].

Preparation and Protonation of Fe2(pdt)(CNR)6, Electron-Rich Analogues of Fe2(pdt)(CO)6

ARRIGONI, FEDERICA
Penultimo
;
ZAMPELLA, GIUSEPPE
Ultimo
2016

Abstract

The complexes Fe2(pdt)(CNR)6 (pdt2- = CH2(CH2S-)2) were prepared by thermal substitution of the hexacarbonyl complex with the isocyanides RNC for R = C6H4-4-OMe (1), C6H4-4-Cl (2), Me (3). These complexes represent electron-rich analogues of the parent Fe2(pdt)(CO)6. Unlike most substituted derivatives of Fe2(pdt)(CO)6, these isocyanide complexes are sterically unencumbered and have the same idealized symmetry as the parent hexacarbonyl derivatives. Like the hexacarbonyls, the stereodynamics of 1-3 involve both turnstile rotation of the Fe(CNR)3 as well as the inversion of the chair conformation of the pdt ligand. Structural studies indicate that the basal isocyanide has nonlinear CNC bonds and short Fe-C distances, indicating that they engage in stronger Fe-C π-backbonding than the apical ligands. Cyclic voltammetry reveals that these new complexes are far more reducing than the hexacarbonyls, although the redox behavior is complex. Estimated reduction potentials are E1/2 ≈ -0.6 ([2]+/0), -0.7 ([1]+/0), and -1.25 ([3]+/0). According to DFT calculations, the rotated isomer of 3 is only 2.2 kcal/mol higher in energy than the crystallographically observed unrotated structure. The effects of rotated versus unrotated structure and of solvent coordination (THF, MeCN) on redox potentials were assessed computationally. These factors shift the redox couple by as much as 0.25 V, usually less. Compounds 1 and 2 protonate with strong acids to give the expected μ-hydrides [H1]+ and [H2]+. In contrast, 3 protonates with [HNEt3]BArF4 (pKaMeCN = 18.7) to give the aminocarbyne [Fe2(pdt)(CNMe)5(μ-CN(H)Me)]+ ([3H]+). According to NMR measurements and DFT calculations, this species adopts an unsymmetrical, rotated structure. DFT calculations further indicate that the previously described carbyne complex [Fe2(SMe)2(CO)3(PMe3)2(CCF3)]+ also adopts a rotated structure with a bridging carbyne ligand. Complex [3H]+ reversibly adds MeNC to give [Fe2(pdt)(CNR)6(μ-CN(H)Me)]+ ([3H(CNMe)]+). Near room temperature, [3H]+ isomerizes to the hydride [(μ-H)Fe2(pdt)(CNMe)6]+ ([H3]+) via a first-order pathway.
Articolo in rivista - Articolo scientifico
Inorganic Chemistry; Physical and Theoretical Chemistry
English
2016
55
7
3401
3412
none
Zhou, X., Barton, B., Chambers, G., Rauchfuss, T., Arrigoni, F., Zampella, G. (2016). Preparation and Protonation of Fe2(pdt)(CNR)6, Electron-Rich Analogues of Fe2(pdt)(CO)6. INORGANIC CHEMISTRY, 55(7), 3401-3412 [10.1021/acs.inorgchem.5b02789].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/129969
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
Social impact