NF1 microdeletion syndrome is caused by haploinsufficiency of the NF1 gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by non-allelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while the remaining deletions show unusual breakpoints. We performed high-resolution FISH analysis of 18 NF1 microdeleted patients with the aims of mapping non-recurrent deletion breakpoints and verifying the presence of additional recombination-prone architectural motifs. This approach allowed us to obtain the sequence of the first junction fragment of an atypical deletion. By conventional FISH, we identified 16 patients with REP-mediated common deletions, and two patients carrying atypical deletions of 1.3 Mb and 3 Mb. Following fibre-FISH, we identified breakpoint regions of 100 kb, which led to the generation of several locus-specific probes restricting the atypical deletion endpoint intervals to a few kilobases. Sequence analysis provided evidence of small blocks of REPs, clustered around the 1.3-Mb deletion breakpoints, probably involved in intrachromatid non-allelic homologous recombination (NAHR), while isolation and sequencing of the 3-Mb deletion junction fragment indicated that a non-homologous end joining (NHEJ) mechanism is implicated.
Venturin, M., Gervasini, C., Orzan, F., Bentivegna, A., Corrado, L., Colapietro, P., et al. (2004). Evidence for non-homologous end joining and non-allelic homologous recombination in atypical NF1 microdeletions. HUMAN GENETICS, 115(1), 69-80 [10.1007/s00439-004-1101-2].
Evidence for non-homologous end joining and non-allelic homologous recombination in atypical NF1 microdeletions.
BENTIVEGNA, ANGELA;
2004
Abstract
NF1 microdeletion syndrome is caused by haploinsufficiency of the NF1 gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by non-allelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while the remaining deletions show unusual breakpoints. We performed high-resolution FISH analysis of 18 NF1 microdeleted patients with the aims of mapping non-recurrent deletion breakpoints and verifying the presence of additional recombination-prone architectural motifs. This approach allowed us to obtain the sequence of the first junction fragment of an atypical deletion. By conventional FISH, we identified 16 patients with REP-mediated common deletions, and two patients carrying atypical deletions of 1.3 Mb and 3 Mb. Following fibre-FISH, we identified breakpoint regions of 100 kb, which led to the generation of several locus-specific probes restricting the atypical deletion endpoint intervals to a few kilobases. Sequence analysis provided evidence of small blocks of REPs, clustered around the 1.3-Mb deletion breakpoints, probably involved in intrachromatid non-allelic homologous recombination (NAHR), while isolation and sequencing of the 3-Mb deletion junction fragment indicated that a non-homologous end joining (NHEJ) mechanism is implicated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.