A model for the modulated crystal structure of an antigorite polysome with m = 16 (where m is related to the number of tetrahedra spanning a wavelength along a) was reÞ ned by single-crystal synchrotron diffraction data in C2/m, using crystals coexisting with the m = 17 polysome from Val Malenco, Italy, which was previously determined structurally. Lattice parameters [a = 81.664(10), b = 9.255(5), c = 7.261(5) Å, β = 91.409(5)°] were determined using a single-crystal diffractometer equipped with an area detector at the Desy synchrotron (Hamburg). The structure was solved by direct methods, and the model refined using 19222 symmetry-related reflections. The final R4σ factor was 0.0951, calculated for 7246 reflections. The structure of the m = 16 antigorite polysome strongly resembles that of the m = 17 polysome. A continuous, wavy octahedral sheet is linked to a tetrahedral sheet, reversing its polarity through sixfold tetrahedral and eightfold tetrahedral rings. The half-wave has a curvature radius of 80.1 Å. Polyhedral geometry, ditrigonalization angles, and interlayer O-O distances are similar in the two polysomes. The only differences concern the number of tetrahedra for the m = 16 polysome (an even number which leads to symmetric half-waves) and the periodic b/2 shift involving the eightfold rings (to produce the doubling of the a parameter and a C-centered cell).

Mellini, M., Capitani, G. (2006). The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction. AMERICAN MINERALOGIST, 91(2-3), 394-399 [10.2138/am.2006.1919].

The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction

CAPITANI, GIANCARLO
2006

Abstract

A model for the modulated crystal structure of an antigorite polysome with m = 16 (where m is related to the number of tetrahedra spanning a wavelength along a) was reÞ ned by single-crystal synchrotron diffraction data in C2/m, using crystals coexisting with the m = 17 polysome from Val Malenco, Italy, which was previously determined structurally. Lattice parameters [a = 81.664(10), b = 9.255(5), c = 7.261(5) Å, β = 91.409(5)°] were determined using a single-crystal diffractometer equipped with an area detector at the Desy synchrotron (Hamburg). The structure was solved by direct methods, and the model refined using 19222 symmetry-related reflections. The final R4σ factor was 0.0951, calculated for 7246 reflections. The structure of the m = 16 antigorite polysome strongly resembles that of the m = 17 polysome. A continuous, wavy octahedral sheet is linked to a tetrahedral sheet, reversing its polarity through sixfold tetrahedral and eightfold tetrahedral rings. The half-wave has a curvature radius of 80.1 Å. Polyhedral geometry, ditrigonalization angles, and interlayer O-O distances are similar in the two polysomes. The only differences concern the number of tetrahedra for the m = 16 polysome (an even number which leads to symmetric half-waves) and the periodic b/2 shift involving the eightfold rings (to produce the doubling of the a parameter and a C-centered cell).
Articolo in rivista - Articolo scientifico
synchrotron diffraction, crystal structure, antigorite
English
2006
91
2-3
394
399
none
Mellini, M., Capitani, G. (2006). The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction. AMERICAN MINERALOGIST, 91(2-3), 394-399 [10.2138/am.2006.1919].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/12438
Citazioni
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 46
Social impact