Studying heat transfer in 3D water or ice basins involves the solution of Navier Stokes or Stokes systems of PDE, coupled with a scalar equation for thermal energy transport. The method used in this paper is based on a Finite Volume technique where physical quantities and boundary conditions are approximated by means of high order formulae and the time advance is dealt with by a fractional step technique. This paper is mainly concerned with applications, but, with respect to a preceding version of the method, an evaluation of performance of techniques dealing with the turbulent viscosity in water basins is presented and a study of the temperature field in a glacier is included. The method is applied to a thermal discharge in a water basin of lower temperature and to a portion of the Priestley Glacier (Antarctica). The results are very accurate and coherent with the physical theory and with measured data.
Ceci, S., Fossati, G., DE BIASE, L. (2006). Heat transfer in 3D water and ice basins. In 9th International Conference on Advanced Computational Methods and Experimental Measurements in Heat and Mass Transfer 2006, HT06 (pp.143-152). WIT Press [10.2495/HT060141].
Heat transfer in 3D water and ice basins
DE BIASE, LUCIA
2006
Abstract
Studying heat transfer in 3D water or ice basins involves the solution of Navier Stokes or Stokes systems of PDE, coupled with a scalar equation for thermal energy transport. The method used in this paper is based on a Finite Volume technique where physical quantities and boundary conditions are approximated by means of high order formulae and the time advance is dealt with by a fractional step technique. This paper is mainly concerned with applications, but, with respect to a preceding version of the method, an evaluation of performance of techniques dealing with the turbulent viscosity in water basins is presented and a study of the temperature field in a glacier is included. The method is applied to a thermal discharge in a water basin of lower temperature and to a portion of the Priestley Glacier (Antarctica). The results are very accurate and coherent with the physical theory and with measured data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.