In this preliminary note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point

Ambrosetti, A., Felli, V., Malchiodi, A. (2004). Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 15(2), 81-86.

Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity

FELLI, VERONICA;
2004

Abstract

In this preliminary note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point
Articolo in rivista - Articolo scientifico
Nonlinear Schrödinger equations, ground states
English
2004
15
2
81
86
none
Ambrosetti, A., Felli, V., Malchiodi, A. (2004). Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 15(2), 81-86.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/11560
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
Social impact