In this paper we adress the construction of polyharmonic prewavelets in low dimensions, extending the approach of Riemenschneider and Scen [10] to the non-othonormal setting. Such prewavelets are derived from the polyharmonic Lagrangean spline and its dual. We provide formula for an efficient construction of the functions, filters, and the associated multiresolution analysis.

Bacchelli, B., Bozzini, M., Rabut, C. (2007). Polyharmonic wavelets based on Lagrangean functions. In A. Cohen, J.L. Merrien, L. Schumaker (a cura di), Curve and surface fitting: Avignon 2006 (pp. 11-20). Brentwood : Nashboro Press.

Polyharmonic wavelets based on Lagrangean functions

BACCHELLI, BARBARA;BOZZINI, MARIA TUGOMIRA;
2007

Abstract

In this paper we adress the construction of polyharmonic prewavelets in low dimensions, extending the approach of Riemenschneider and Scen [10] to the non-othonormal setting. Such prewavelets are derived from the polyharmonic Lagrangean spline and its dual. We provide formula for an efficient construction of the functions, filters, and the associated multiresolution analysis.
Capitolo o saggio
Computational Harmonic Analysis, Polyharmonic wavelets
English
Curve and surface fitting: Avignon 2006
Cohen, A; Merrien, JL; Schumaker, L
2007
978-0-9728482-8-2
Nashboro Press
11
20
Bacchelli, B., Bozzini, M., Rabut, C. (2007). Polyharmonic wavelets based on Lagrangean functions. In A. Cohen, J.L. Merrien, L. Schumaker (a cura di), Curve and surface fitting: Avignon 2006 (pp. 11-20). Brentwood : Nashboro Press.
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/11503
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact