Suppose G acts amenably on a measure space X with quasiinvariant σ-finite measure m. Let σ be an isometric representation of G on L<sup>p</sup>(X, dm) and μ a finite Radon measure on G. We show that the operator σμf(x) = f<sub>G</sub>(σ(g)f)(x)dμ(g) has L <sub>p</sub>(X, dm)-operator norm not exceeding the L<sup>p</sup>(G)-operator norm of the convolution operator defined by μ. We shall also prove an analogous result for the maximal function M associated to a countable family of Radon measures μ<sub>n</sub>. © 2004 American Mathematical Society.

Hebisch, W., Kuhn, M. (2005). Transference for amenable actions. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 133(6), 1733-1740 [10.1090/S0002-9939-04-07741-X].

Transference for amenable actions

KUHN, MARIA GABRIELLA
2005

Abstract

Suppose G acts amenably on a measure space X with quasiinvariant σ-finite measure m. Let σ be an isometric representation of G on Lp(X, dm) and μ a finite Radon measure on G. We show that the operator σμf(x) = fG(σ(g)f)(x)dμ(g) has L p(X, dm)-operator norm not exceeding the Lp(G)-operator norm of the convolution operator defined by μ. We shall also prove an analogous result for the maximal function M associated to a countable family of Radon measures μn. © 2004 American Mathematical Society.
Articolo in rivista - Articolo scientifico
Group representations, amenable actions
English
2005
133
6
1733
1740
none
Hebisch, W., Kuhn, M. (2005). Transference for amenable actions. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 133(6), 1733-1740 [10.1090/S0002-9939-04-07741-X].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/11468
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact