Late transition metal phosphides have been reported to have high activity for catalyzing hydrogen evolution reaction (HER), yet their active site and stability are not well-understood. Here we report systematic activity and stability study of CoP for HER by combining electrochemical measurements for CoP nanoparticles (NPs) with ex situ and in situ synchrotron X-ray absorption (XAS) spectroscopy at phosphorus and cobalt K edges, as well as density functional theory (DFT) calculations. Colloidally synthesized CoP NPs showed high HER activity in both acid and base electrolytes, comparable to previous work, where no significant pH dependence was observed. Transmission electron microscopy-energy dispersive spectroscopy study of CoP NPs before and after exposure to potentials in the range from 0 to 1.4 V vs. the reversible hydrogen electrode (RHE) revealed that the P/Co ratio reduced with increasing potential in the potentiostatic measurements prior to HER measurements. The reduced P/Co ratio was accompanied with the emergence of (oxy)phosphate(s) as revealed by XAS, and reduced specific HER activity, suggesting the important role of P in catalyzing HER. This hypothesis was further supported by DFT calculations of HER on the most stable (011) surface of CoP and voltage dependent intensities of both phosphide and phosphate components from P-K edge X-ray spectroscopy. This work highlights the need of stabilizing metal phosphides and optimizing their surface P sites in order to realize the practical use of metal phosphides to catalyze HER in electrochemical and photoelectrochemical devices.
Ha, D., Han, B., Risch, M., Giordano, L., Yao, K., Karayaylali, P., et al. (2016). Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. NANO ENERGY, 29, 37-45 [10.1016/j.nanoen.2016.04.034].
Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting
GIORDANO, LIVIA;
2016
Abstract
Late transition metal phosphides have been reported to have high activity for catalyzing hydrogen evolution reaction (HER), yet their active site and stability are not well-understood. Here we report systematic activity and stability study of CoP for HER by combining electrochemical measurements for CoP nanoparticles (NPs) with ex situ and in situ synchrotron X-ray absorption (XAS) spectroscopy at phosphorus and cobalt K edges, as well as density functional theory (DFT) calculations. Colloidally synthesized CoP NPs showed high HER activity in both acid and base electrolytes, comparable to previous work, where no significant pH dependence was observed. Transmission electron microscopy-energy dispersive spectroscopy study of CoP NPs before and after exposure to potentials in the range from 0 to 1.4 V vs. the reversible hydrogen electrode (RHE) revealed that the P/Co ratio reduced with increasing potential in the potentiostatic measurements prior to HER measurements. The reduced P/Co ratio was accompanied with the emergence of (oxy)phosphate(s) as revealed by XAS, and reduced specific HER activity, suggesting the important role of P in catalyzing HER. This hypothesis was further supported by DFT calculations of HER on the most stable (011) surface of CoP and voltage dependent intensities of both phosphide and phosphate components from P-K edge X-ray spectroscopy. This work highlights the need of stabilizing metal phosphides and optimizing their surface P sites in order to realize the practical use of metal phosphides to catalyze HER in electrochemical and photoelectrochemical devices.File | Dimensione | Formato | |
---|---|---|---|
Ha-2016-Nano Energy-AAM.pdf
accesso aperto
Descrizione: Research Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
Ha-2016-Nano Energy-VoR.pdf
Solo gestori archivio
Descrizione: Research Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.