Dibromotetracene molecules are deposited on the Cu(110) surface at room temperature. The complex evolution of this system has been monitored at different temperatures (i.e., 298, 523, 673, and 723 K) by means of a variety of complementary techniques that range from STM and temperature-programmed desorption (TPD) to high-resolution X-ray spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). State-of-the-art density-functional calculations were used to determine the chemical processes that take place on the surface. After deposition at room temperature, the organic molecules are transformed into organometallic monomers through debromination and carbon-radical binding to copper adatoms. Organometallic dimers, trimers, or small oligomers, which present copper-bridged molecules, are formed by increasing the temperature. Surprisingly, further heating to 673 K causes the formation of elongated chains along the Cu(110) close-packed rows as a consequence of radical-site migration to the thermodynamically more stable molecule heads. Finally, massive dehydrogenation occurs at the highest temperature followed by ring condensation to nanographenic patches. This study is a paradigmatic example of how intermolecular coupling can be modulated by the stepwise control of a simple parameter, such as temperature, through a sequence of domino reactions.

Ferrighi, L., Píš, I., Nguyen, T., Cattelan, M., Nappini, S., Basagni, A., et al. (2015). Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C-Br and C-H bonds. CHEMISTRY-A EUROPEAN JOURNAL, 21(15), 5826-5834 [10.1002/chem.201405817].

Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C-Br and C-H bonds

FERRIGHI, LARA
;
PARRAVICINI, MATTEO;PAPAGNI, ANTONIO;DI VALENTIN, CRISTIANA
Penultimo
;
2015

Abstract

Dibromotetracene molecules are deposited on the Cu(110) surface at room temperature. The complex evolution of this system has been monitored at different temperatures (i.e., 298, 523, 673, and 723 K) by means of a variety of complementary techniques that range from STM and temperature-programmed desorption (TPD) to high-resolution X-ray spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). State-of-the-art density-functional calculations were used to determine the chemical processes that take place on the surface. After deposition at room temperature, the organic molecules are transformed into organometallic monomers through debromination and carbon-radical binding to copper adatoms. Organometallic dimers, trimers, or small oligomers, which present copper-bridged molecules, are formed by increasing the temperature. Surprisingly, further heating to 673 K causes the formation of elongated chains along the Cu(110) close-packed rows as a consequence of radical-site migration to the thermodynamically more stable molecule heads. Finally, massive dehydrogenation occurs at the highest temperature followed by ring condensation to nanographenic patches. This study is a paradigmatic example of how intermolecular coupling can be modulated by the stepwise control of a simple parameter, such as temperature, through a sequence of domino reactions.
No
Articolo in rivista - Articolo scientifico
Scientifica
C-H activation; density functional calculations; organic electronics; surfaces and interfaces; Ullmann reaction; Chemistry (all)
English
Ferrighi, L., Píš, I., Nguyen, T., Cattelan, M., Nappini, S., Basagni, A., et al. (2015). Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C-Br and C-H bonds. CHEMISTRY-A EUROPEAN JOURNAL, 21(15), 5826-5834 [10.1002/chem.201405817].
Ferrighi, L; Píš, I; Nguyen, T; Cattelan, M; Nappini, S; Basagni, A; Parravicini, M; Papagni, A; Sedona, F; Magnano, E; Bondino, F; DI VALENTIN, C; Agnoli, S
File in questo prodotto:
File Dimensione Formato  
chemistry eur j 2015.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 4.98 MB
Formato Adobe PDF
4.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
proofs chemistry Eur j 2015.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/110763
Citazioni
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
Social impact