We consider Fano manifolds M that admit a collection of finite automorphism groups G_1, ..., G_k such that the quotients M/G_i are smooth Fano manifolds possessing a Kaehler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that M admits a Kaehler-Einstein metric too.

Arezzo, C., Ghigi, A., Pirola, G. (2006). Symmetries, quotients and Kaehler-Einstein metrics. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 591(591), 177-200 [10.1515/CRELLE.2006.018].

Symmetries, quotients and Kaehler-Einstein metrics

GHIGI, ALESSANDRO CALLISTO;
2006

Abstract

We consider Fano manifolds M that admit a collection of finite automorphism groups G_1, ..., G_k such that the quotients M/G_i are smooth Fano manifolds possessing a Kaehler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that M admits a Kaehler-Einstein metric too.
Articolo in rivista - Articolo scientifico
Kaehler-Einstein metrics
English
2006
591
591
177
200
none
Arezzo, C., Ghigi, A., Pirola, G. (2006). Symmetries, quotients and Kaehler-Einstein metrics. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 591(591), 177-200 [10.1515/CRELLE.2006.018].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/1083
Citazioni
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
Social impact