We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.
Cusano, C., Napoletano, P., Schettini, R. (2015). Remote Sensing Image Classification Exploiting Multiple Kernel Learning. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 12(11), 2331-2335 [10.1109/LGRS.2015.2476365].
Remote Sensing Image Classification Exploiting Multiple Kernel Learning
CUSANO, CLAUDIO
;NAPOLETANO, PAOLOSecondo
;SCHETTINI, RAIMONDOUltimo
2015
Abstract
We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
grsl_2015.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cusano2015remote-sensing.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.