Given a Hodge manifold, it is introduced a self-adjoint operator on the space of endomorphisms of the global holomorphic sections of the polarization line bundle. Such operator is shown to approximate the Laplace operator on functions when composed with Berezin-Toeplitz quantization map and its adjoint, up to an error which tends to zero when taking higher powers of the polarization line bundle.

Della Vedova, A. (2015). A note on Berezin-Toeplitz quantization of the Laplace operator. COMPLEX MANIFOLDS, 2(1), 131-139 [10.1515/coma-2015-0010].

A note on Berezin-Toeplitz quantization of the Laplace operator

Della Vedova, A
2015

Abstract

Given a Hodge manifold, it is introduced a self-adjoint operator on the space of endomorphisms of the global holomorphic sections of the polarization line bundle. Such operator is shown to approximate the Laplace operator on functions when composed with Berezin-Toeplitz quantization map and its adjoint, up to an error which tends to zero when taking higher powers of the polarization line bundle.
Articolo in rivista - Articolo scientifico
Berezin-Toeplitz quantization, Laplace operator, Hodge manifold
English
131
139
9
Della Vedova, A. (2015). A note on Berezin-Toeplitz quantization of the Laplace operator. COMPLEX MANIFOLDS, 2(1), 131-139 [10.1515/coma-2015-0010].
Della Vedova, A
File in questo prodotto:
File Dimensione Formato  
3_LapQuant.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/101492
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
Social impact