Let C be a smooth complex irreducible projective curve of genus g ≥ 3. We show that if C is a Petri curve with g ≥ 4, a general stable vector bundle E on C, with integer slope, admits an irreducible and reduced theta divisor Θ<inf>E</inf>, whose singular locus has dimension g - 4. If C is non-hyperelliptic of genus 3, then actually Θ<inf>E</inf> is smooth and irreducible for a general stable vector bundle E with integer slope on C.
Brivio, S. (2015). A note on theta divisors of stable bundles. REVISTA MATEMATICA IBEROAMERICANA, 31(2), 601-608 [10.4171/rmi/846].
A note on theta divisors of stable bundles
BRIVIO, SONIA
Primo
2015
Abstract
Let C be a smooth complex irreducible projective curve of genus g ≥ 3. We show that if C is a Petri curve with g ≥ 4, a general stable vector bundle E on C, with integer slope, admits an irreducible and reduced theta divisor ΘFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A note on theta divisors of stable bundles.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
162.79 kB
Formato
Adobe PDF
|
162.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.