CZTS(e), often referred to as kesterites, are a class of semiconductors with a direct band gap ranging between 1.0 and 1.5 eV and an absorption coefficient in the order of 104 cm-1 in the visible spectrum, and during the last two decades they have been gaining a lot of attention because of their potential use as a thin film absorbers in photovoltaics. Another thin film chalcogenide, CIGS, with composition Cu2InxGa(1-x)Se2 has already reached the commercial production stage, but the constant increase of indium price has driven hunt to alternative materials, like Cu2ZnSn(S,Se)4, which are composed only of abundant (thus relatively cheap) elements. In order to meet the terawatt-scale power generation with photovoltaics, not only the abundancy of the raw materials is a key factor, but also the method chosen for growing these materials need to be carefully considered. The vacuum-based processes including co-evaporation and sputtering have been largely used for preparing absorber layers on a laboratory scale. However, these methods have drawbacks such as the complexity in process and high production costs. Non-vacuum chemical processes are characterized by simpler fabrication steps compared to vacuum-based methods. In this thesis, three new non-vacuum deposition techniques have been studied: -the spin-coating of a sol-gel, -the drop-casting of a suspension composed of thiourea-metal complexes -the blade-coating of a metal formates containing concentrated solution. For all the methods developed in this work, the quality of the resulting absorber layers is evaluated in terms of phase purity, compactness of the film and performance of the solar cells. The CZTS(e) layers were analysed by scanning electron microscopy, energy-dispersive spectroscopy, Raman spectroscopy, optical microscopy and x-ray diffractometry. The devices were characterized with current-voltage measurements under illumination and external quantum efficiency measurements. A particular focus was set on the feasibility of a deposition method at temperatures lower than the one normally used to growth CZTS (550 °C). The aim is to use flexible substrates like polyimide that cannot sustain temperature higher than 450 °C. Then the focus was shifted on the optimization of the process parameters, namely the solvent composition, the heating and cooling rates during thermal treatments, the concentration of the sulfur source and the use of a polymeric binder, in order to produce compact absorber layers,. A preliminary study of sodium addition to the liquid formulation showed beneficial effects on the microstructure of the absorber and on the performance of solar cells produced in this work. Only with absorbers grown via the first and third method we succeed in making working devices. In particular, with a CZTSe thin film (less than 700 nm thick) produced by depositing the ink composed of metal formates and a nitrogen-rich base plus a sodium source, the highest efficiency achieved for a solar cell was 3.1%. The Jsc (29.8 mAcm-2) extracted from the J-V curve under illumination matches with some much more efficient CZTSe cells reported in the literature, indicating a good quality of the absorber layer. The Voc and the Fill Factor were 260 mV and 41% respectively, showing this low-cost solution process is very promising for further studies.

Le kesteriti sono una classe di semiconduttori con un band gap diretto compresa tra 1,0 e 1,5 eV e un coefficiente di assorbimento dell'ordine di 10^4 cm^ -1 nello spettro visibile e durante gli ultimi vent’anni hanno ricevuto parecchia attenzione a causa della loro potenziale applicabilità come materiali a film sottile nel fotovoltaico. Un altro calcogenuro a film sottile, il CIGS, di composizione Cu2InxGa (1-x)Se2 è già prodotto a livello industriale, ma il costante aumento del prezzo dell’ indio ha spinto la ricerca di materiali alternativi, come il CZTS(e), che sono composti solo da elementi abbondanti (quindi relativamente a buon mercato). Al fine di soddisfare per mezzo di fonti rinnovabili la crescente domanda di energia, non solo l’ abbondanza delle materie prime è un fattore chiave, ma anche i metodi scelti per la crescita di questi materiali devono essere attentamente valutati. I processi basati sul vuoto come la co-evaporazione e lo sputtering sono stati ampiamente utilizzati per la preparazione di strati assorbitori su scala di laboratorio. Tuttavia, questi metodi sono piuttosto complessi e comprendono costi di produzione elevati. I metodi a pressione ambiente (metodi chimici) sono caratterizzati da fasi di fabbricazione più semplici rispetto ai metodi in vuoto. In questa tesi sono state studiate tre diverse tecniche di deposizione chimiche: lo spin coating di una formulazione sol-gel, il drop-casting di una sospensione composta da complessi metallo-tiourea e blade coating d una soluzione concentrata contenente formiati. Per quanto riguarda il secondo metodo, è stata posta particolare attenzione sulla fattibilità di un metodo di deposizione attuato a temperature inferiori rispetto a quelle riportate in letteratura. Successivamente il focus è stato puntato sulla ottimizzazione dei parametri di processo in modo da regolare la reologia del strato assorbitore, ovvero la composizione del solvente, la velocità di riscaldamento e raffreddamento durante i trattamenti termici, la concentrazione tiourea e l'uso di un legante polimerico. Per quanto riguarda il terzo metodo, l'obiettivo era di sfruttare il potere riducente degli anioni formiato per ottenere precursori metallici. Ulteriori studi sono stati effettutati sugli effetti del doping di sodio sulla morfologia del CZTSe. Mediante analisi termogravimetrica accoppiata a spettrometria di massa è stato anche possibile descrivere parzialmente la chimica di formazione dello strato di film precursore. Per tutti i metodi presentati la qualità degli strati assobitori è stata valutata in termini di purezza di fase, compattezza del film risultante e le prestazioni dei dispositivi fotovoltaici. I film di CZTS(e) sono stati analizzati mediante microscopia elettronica a scansione,spettroscopia EDX, spettroscopia Raman, microscopia ottica e diffrazione di raggi X. I dispositivi sono stati caratterizzati con misure di corrente-tensione sotto illuminazione e misure di efficienza quantica esterna.

(2015). CZTS(e) thin films grown by chemical methods for photovoltaic application. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

CZTS(e) thin films grown by chemical methods for photovoltaic application

TOMBOLATO, SARA
2015

Abstract

CZTS(e), often referred to as kesterites, are a class of semiconductors with a direct band gap ranging between 1.0 and 1.5 eV and an absorption coefficient in the order of 104 cm-1 in the visible spectrum, and during the last two decades they have been gaining a lot of attention because of their potential use as a thin film absorbers in photovoltaics. Another thin film chalcogenide, CIGS, with composition Cu2InxGa(1-x)Se2 has already reached the commercial production stage, but the constant increase of indium price has driven hunt to alternative materials, like Cu2ZnSn(S,Se)4, which are composed only of abundant (thus relatively cheap) elements. In order to meet the terawatt-scale power generation with photovoltaics, not only the abundancy of the raw materials is a key factor, but also the method chosen for growing these materials need to be carefully considered. The vacuum-based processes including co-evaporation and sputtering have been largely used for preparing absorber layers on a laboratory scale. However, these methods have drawbacks such as the complexity in process and high production costs. Non-vacuum chemical processes are characterized by simpler fabrication steps compared to vacuum-based methods. In this thesis, three new non-vacuum deposition techniques have been studied: -the spin-coating of a sol-gel, -the drop-casting of a suspension composed of thiourea-metal complexes -the blade-coating of a metal formates containing concentrated solution. For all the methods developed in this work, the quality of the resulting absorber layers is evaluated in terms of phase purity, compactness of the film and performance of the solar cells. The CZTS(e) layers were analysed by scanning electron microscopy, energy-dispersive spectroscopy, Raman spectroscopy, optical microscopy and x-ray diffractometry. The devices were characterized with current-voltage measurements under illumination and external quantum efficiency measurements. A particular focus was set on the feasibility of a deposition method at temperatures lower than the one normally used to growth CZTS (550 °C). The aim is to use flexible substrates like polyimide that cannot sustain temperature higher than 450 °C. Then the focus was shifted on the optimization of the process parameters, namely the solvent composition, the heating and cooling rates during thermal treatments, the concentration of the sulfur source and the use of a polymeric binder, in order to produce compact absorber layers,. A preliminary study of sodium addition to the liquid formulation showed beneficial effects on the microstructure of the absorber and on the performance of solar cells produced in this work. Only with absorbers grown via the first and third method we succeed in making working devices. In particular, with a CZTSe thin film (less than 700 nm thick) produced by depositing the ink composed of metal formates and a nitrogen-rich base plus a sodium source, the highest efficiency achieved for a solar cell was 3.1%. The Jsc (29.8 mAcm-2) extracted from the J-V curve under illumination matches with some much more efficient CZTSe cells reported in the literature, indicating a good quality of the absorber layer. The Voc and the Fill Factor were 260 mV and 41% respectively, showing this low-cost solution process is very promising for further studies.
BINETTI, SIMONA OLGA
CZTS, kesterite, solar cells, thin films, photovoltaic, wet processes, ink, thiourea, sulfides, low-cost
CHIM/02 - CHIMICA FISICA
English
19-mar-2015
Scuola di dottorato di Scienze
SCIENZE CHIMICHE - 18R
27
2013/2014
open
(2015). CZTS(e) thin films grown by chemical methods for photovoltaic application. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_067972.pdf

accesso aperto

Descrizione: Tesi dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 6.37 MB
Formato Adobe PDF
6.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/77923
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact