Recommender systems are software components that assist users in finding what they are looking for. They have been applied to all kinds of domains, from ecommerce to news, from music to tourism, exploiting all the information available in order to learn user's preferences and to provide useful recommendations. The broad area of recommender systems has many topics that require a deep understanding and great research efforts. In particular, three main aspects are: algorithms, which are the hidden intelligent components that compute recommendations; interfaces, which are the way in which recommendations are shown to the user; evaluation, which is the methodology to assess the effectiveness of a recommender system. In this dissertation we focus on these aspects guided by three considerations. First, textual content related to items and ratings can be exploited in order to improve several aspects, such as to compute recommendations, provide explanations, understand user's tastes and item's capabilities. Second, time in recommender systems should be considered as it has a great influence on popularity and tastes. Third, offline evaluation protocols are not fully convincing, as they are based on accuracy statistics that do not always reflect real user's preferences. Following these motivations six contributions have been delivered, broadly divided in the integration of concepts and time in recommender systems, the application of the topic model to analyze user reviews and to explain latent factors, and the validation of offline recommendation accuracy measurements.

I sistemi di raccomandazione sono componenti software che aiutano gli utenti a trovare quello che stanno cercando. I sistemi di raccomandazione sono stati applicati a diverse aree, dal commercio elettronico alle notizie, dalla musica al turismo, sfruttando tutte le informazioni disponibili per imparare le preferenze dell’utente e fornire raccomandazioni utili. La vasta area dei sistemi di raccomandazione riguarda molte tematiche che richiedono una conoscenza profonda e grandi sforzi di ricerca. In particolare, tre aspetti principali sono: algoritmi, ossia i componenti intelligenti che elaborano le raccomandazioni; interfacce, ossia gli strumenti che permettono di mostrare le raccomandazioni agli utenti; valutazione, ossia le metodologie per validare l’efficacia dei sistemi di raccomandazione. In questa dissertazione ci focalizziamo su questi aspetti guidati da tre considerazioni. Primo, il contenuto testuale relativo agli item e ai rating può essere sfruttato per migliorare diversi aspetti, come elaborare raccomandazioni, fornire spiegazioni e comprendere i gusti degli utenti e le potenzialità degli item. Secondo, il tempo nei sistemi di raccomandazione dovrebbe essere considerato in quanto ha una grande influenza sulla popolarità e sui gusti. Terzo, i protocolli di valutazione offline non sono completamente convincenti, in quanto si basano su statistiche di accuratezza che non sempre rispecchiano le reali preferenze dell’utente. Date le motivazioni citate, vengono forniti sei contributi divisi tra l’integrazione di concetti e tempo nei sistemi di raccomandazione, l’applicazione del topic model per analizzare recensioni e spiegare fattori latenti, e la validazione delle misure di valutazione offline.

(2015). Advancing Recommender Systems from the Algorithm, Interface and Methodological Perspective. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

Advancing Recommender Systems from the Algorithm, Interface and Methodological Perspective

ROSSETTI, MARCO
2015

Abstract

Recommender systems are software components that assist users in finding what they are looking for. They have been applied to all kinds of domains, from ecommerce to news, from music to tourism, exploiting all the information available in order to learn user's preferences and to provide useful recommendations. The broad area of recommender systems has many topics that require a deep understanding and great research efforts. In particular, three main aspects are: algorithms, which are the hidden intelligent components that compute recommendations; interfaces, which are the way in which recommendations are shown to the user; evaluation, which is the methodology to assess the effectiveness of a recommender system. In this dissertation we focus on these aspects guided by three considerations. First, textual content related to items and ratings can be exploited in order to improve several aspects, such as to compute recommendations, provide explanations, understand user's tastes and item's capabilities. Second, time in recommender systems should be considered as it has a great influence on popularity and tastes. Third, offline evaluation protocols are not fully convincing, as they are based on accuracy statistics that do not always reflect real user's preferences. Following these motivations six contributions have been delivered, broadly divided in the integration of concepts and time in recommender systems, the application of the topic model to analyze user reviews and to explain latent factors, and the validation of offline recommendation accuracy measurements.
ARCELLI FONTANA, FRANCESCA
Recommender systems, Collaborative filtering, Content-based, Topic Model, Explanations, Text Mining
INF/01 - INFORMATICA
English
12-feb-2015
Scuola di dottorato di Scienze
INFORMATICA - 22R
27
2013/2014
open
(2015). Advancing Recommender Systems from the Algorithm, Interface and Methodological Perspective. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
PhD_unimib_ 732150 .pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/70560
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact