The analysis of the huge amount of financial data, made available by electronic markets, calls for new models and techniques to effectively extract knowledge to be exploited in an informed decision-making process. The aim of this thesis is to introduce probabilistic graphical models that can be used to reason and to perform actions in such a context. In the first part of this thesis, we present a framework which exploits Bayesian networks to perform portfolio analysis and optimization in a holistic way. It leverages on the compact and efficient representation of high dimensional probability distributions offered by Bayesian networks and their ability to perform evidential reasoning in order to optimize the portfolio according to different economic scenarios. In many cases, we would like to reason about the market change, i.e. we would like to express queries as probability distributions over time. Continuous time Bayesian networks can be used to address this issue. In the second part of the thesis, we show how it is possible to use this model to tackle real financial problems and we describe two notable extensions. The first one concerns classification, where we introduce an algorithm for learning these classifiers from Big Data, and we describe their straightforward application to the foreign exchange prediction problem in the high frequency domain. The second one is related to non-stationary domains, where we explicitly model the presence of statistical dependencies in multivariate time-series while allowing them to change over time. In the third part of the thesis, we describe the use of continuous time Bayesian networks within the Markov decision process framework, which provides a model for sequential decision-making under uncertainty. We introduce a method to control continuous time dynamic systems, based on this framework, that relies on additive and context-specific features to scale up to large state spaces. Finally, we show the performances of our method in a simplified, but meaningful trading domain.

L'analisi dell'enorme quantità di dati finanziari, messi a disposizione dai mercati elettronici, richiede lo sviluppo di nuovi modelli e tecniche per estrarre efficacemente la conoscenza da utilizzare in un processo decisionale informato. Lo scopo della tesi concerne l'introduzione di modelli grafici probabilistici utilizzati per il ragionamento e l'attività decisionale in tale contesto. Nella prima parte della tesi viene presentato un framework che utilizza le reti Bayesiane per effettuare l'analisi e l'ottimizzazione di portafoglio in maniera olistica. In particolare, esso sfrutta, da un lato, la capacità delle reti Bayesiane di rappresentare distribuzioni di probabilità in modo compatto ed efficiente per modellare il portafoglio e, dall'altro, la loro capacità di fare inferenza per ottimizzare il portafoglio secondo diversi scenari economici. In molti casi, si ha la necessità di ragionare in merito a scenari di mercato nel tempo, ossia si vuole rispondere a domande che coinvolgono distribuzioni di probabilità che evolvono nel tempo. Le reti Bayesiane a tempo continuo possono essere utilizzate in questo contesto. Nella seconda parte della tesi viene mostrato il loro utilizzo per affrontare problemi finanziari reali e vengono descritte due importanti estensioni. La prima estensione riguarda il problema di classificazione, in particolare vengono introdotti un algoritmo per apprendere tali classificatori da Big Data e il loro utilizzo nel contesto di previsione dei cambi valutari ad alta frequenza. La seconda estensione concerne l'apprendimento delle reti Bayesiane a tempo continuo in domini non stazionari, in cui vengono modellate esplicitamente le dipendenze statistiche presenti nelle serie temporali multivariate consentendo loro di cambiare nel corso del tempo. Nella terza parte della tesi viene descritto l'uso delle reti Bayesiane a tempo continuo nell'ambito dei processi decisionali di Markov, i quali consentono di modellare processi decisionali sequenziali in condizioni di incertezza. In particolare, viene introdotto un metodo per il controllo di sistemi dinamici a tempo continuo che sfrutta le proprietà additive e contestuali per scalare efficacemente su grandi spazi degli stati. Infine, vengono mostrate le prestazioni di tale metodo in un contesto significativo di trading.

(2015). Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance

VILLA, SIMONE
2015

Abstract

The analysis of the huge amount of financial data, made available by electronic markets, calls for new models and techniques to effectively extract knowledge to be exploited in an informed decision-making process. The aim of this thesis is to introduce probabilistic graphical models that can be used to reason and to perform actions in such a context. In the first part of this thesis, we present a framework which exploits Bayesian networks to perform portfolio analysis and optimization in a holistic way. It leverages on the compact and efficient representation of high dimensional probability distributions offered by Bayesian networks and their ability to perform evidential reasoning in order to optimize the portfolio according to different economic scenarios. In many cases, we would like to reason about the market change, i.e. we would like to express queries as probability distributions over time. Continuous time Bayesian networks can be used to address this issue. In the second part of the thesis, we show how it is possible to use this model to tackle real financial problems and we describe two notable extensions. The first one concerns classification, where we introduce an algorithm for learning these classifiers from Big Data, and we describe their straightforward application to the foreign exchange prediction problem in the high frequency domain. The second one is related to non-stationary domains, where we explicitly model the presence of statistical dependencies in multivariate time-series while allowing them to change over time. In the third part of the thesis, we describe the use of continuous time Bayesian networks within the Markov decision process framework, which provides a model for sequential decision-making under uncertainty. We introduce a method to control continuous time dynamic systems, based on this framework, that relies on additive and context-specific features to scale up to large state spaces. Finally, we show the performances of our method in a simplified, but meaningful trading domain.
BATINI, CARLO
continuous time Bayesian networks, continuous time Bayesian network classifiers, non-stationary continuous time Bayesian networks, structured continuous time Markov decision processes, model-based reinforcement learning, financial applications
INF/01 - INFORMATICA
English
12-feb-2015
Scuola di dottorato di Scienze
INFORMATICA - 22R
27
2013/2014
open
(2015). Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_054963.pdf

accesso aperto

Descrizione: PhD Thesis
Tipologia di allegato: Doctoral thesis
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/69953
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact