Snf1 is a serine/threonine kinase required by the yeast S. cerevisiae to grow in nutrient-limited conditions and to utilize carbon sources alternative to glucose. In our laboratory we previously demonstrated that lack of Snf1 causes an impairment of the G1/S transition of the cell cycle and a defect in the expression of genes of the G1 phase, even in condition of glucose sufficiency (2% glucose). It was therefore investigated the involvement of Snf1 in three important cellular processes: cycle, signal transduction and metabolism. To demonstrate the necessity of the catalytic activity of Snf1 for a proper G1/S transition was utilized a Snf1-I132G strain, in which the catalytic activity of the kinase can be inhibited by the specific inhibitor 2NM-PP1. The impairment of the G1/S transition and of the transcription of G1 genes in this strain in the presence of the inhibitor was demonstrated performing α-factor release and elutriation experiments. Studying the involvement of Snf1 in the regulation of other signaling pathways it was identified, through CoIP/MS experiments, the interaction between Snf1 and adenylate cyclase (Cyr1), the enzyme responsible for the synthesis of cyclic AMP (cAMP), activator of PKA. The RAS Associating Domain of Cyr1, containing 2 putative Snf1 phosphorylation sites, was purified in E. coli and its in vitro phosphorylation by Snf1 was demonstrated. Moreover, in a Snf1-G53R strain, in which the kinase is constitutively active, we found a reduction of 50% of intracellular cAMP, together with the deregulation of the expression of PKA-dependent genes. We therefore hypothesized the existence of a crosstalk between the Snf1 and PKA pathways.To investigate the global role of Snf1 in conditions of nutritional sufficiency we performed a transcriptomic analysis (gene chip) of wt and snf1Δ cells grown in 2% and 5% glucose, evidencing that lack of Snf1 causes the deregulation of about 1000 genes in 2%, but not in 5% glucose. Among these there are glycolytic genes and therefore possible metabolic deregulations in the absence of Snf1 were investigated. snf1Δ cells grown in 2% glucose secrete more ethanol and acetate, in proportion to their growth rate, compared to the wt. This enhanced glycolytic activity is abolished, as observed for transcripts, in 5% glucose. We further demonstrated that in our growth condition snf1Δ cells accumulate fatty acids, as previously observed in low glucose, due to the lack of Snf1-dependent phosphorylation of acetyl-CoA carboxylase. An extended metabolic analysis, both through mass spectrometry and NMR, revealed in detail the metabolic rewiring occurring in snf1Δ cells to guarantee the growth in spite of the enhanced anabolic processes. snf1Δ cells in 2% glucose accumulate glutamate, coming from the degradation of supplemented amino acids, in an essential process to maintain the growth rate of the mutant. Moreover, the mutant accumulates TCA cycle intermediates and in 2%, but not 5% glucose, is negatively affected by treatment with antimycin A, inhibitor of the electron transport chain. The treatment impairs growth and ATP content and increases NADH in the mutant, demonstrating the necessity of its mitochondrial reoxidation.

Snf1 è una serina/treonina chinasi necessaria per il lievito S. cerevisiae per la crescita in condizioni di limitazione di nutrienti e per l’utilizzo di fonti di carbonio alternative al glucosio. Nel nostro laboratorio è stato precedentemente dimostrato che la mancanza di Snf1 causa un difetto nella transizione G1/S del ciclo cellulare e un difetto nell’espressione dei geni di fase G1 anche in condizioni di sufficienza nutrizionale (2% glucosio). È stato quindi approfondito il coinvolgimento di Snf1 in tre importanti processi cellulari: ciclo, trasduzione del segnale e metabolismo. Per dimostrare la necessità dell’attività catalitica di Snf1 per una corretta transizione G1/S è stato utilizzato un ceppo Snf1-I132G, in cui l’attività della chinasi può essere inibita utilizzando l’inibitore specifico 2NM-PP1. Il difetto nell’effettuare la transizione G1/S e nella trascrizione dei geni di fase G1 di questo ceppo in presenza dell’inibitore è stata dimostrata sia con esperimenti di rilascio da α-factor sia mediante elutriazione. Nello studio del coinvolgimento di Snf1 nella regolazione di altri pathway di trasduzione del segnale è stata identificata, mediante esperimenti di CoIP/MS, l’interazione tra Snf1 e l’adenilato ciclasi (Cyr1), l’enzima responsabile della produzione di AMP ciclico (cAMP), attivatore di PKA. Il dominio della proteina Cyr1 contenente il RAS Associating Domain e 2 putativi siti consenso di Snf1 è stato purificato in E.coli e ne è stata dimostrata la fosforilazione in vitro da parte della chinasi. È stato inoltre da dimostrato che in un ceppo Snf1-G53R, in cui la chinasi è costitutivamente attivata, si ha una riduzione di circa il 50% nel contenuto di cAMP intracellulare, assieme alla deregolazione dell’espressione di geni PKA-dipendenti. É stata quindi ipotizzata l’esistenza di un crosstalk fra i pathway di Snf1 e PKA. Per chiarire il ruolo globale di Snf1 in condizioni di sufficienza nutrizionale è stata effettuata un’analisi trascrittomica (gene-chip) di cellule wt e snf1∆ cresciute in 2% e 5% glucosio. É stato così evidenziato che la mancanza di Snf1 in 2% glucosio, ma non in 5%, causa la deregolazione di circa 1000 geni, fra i quali ad esempio i geni glicolitici. Sono pertanto state indagate le deregolazioni metaboliche presenti in cellule prive di Snf1. L’analisi dei metaboliti secreti da cellule snf1Δ in 2% glucosio ha permesso di dimostrare che, in relazione alla propria velocità di crescita, producono più etanolo ed acetato in confronto a cellule wt. Questa attività glicolitica maggiore del wt è abolita, coerentemente a quanto già osservato, in presenza di 5% glucosio. É stato quindi dimostrato che anche nelle condizioni di crescita dei nostri esperimenti cellule snf1Δ presentano un accumulo di acidi grassi, fenotipo già osservato con bassi livelli di glucosio e dovuto all’assenza di fosforilazione Snf1-dipendente dell’enzima acetil-CoA carbossilasi. Una più estesa analisi metabolica, sia mediante spettrometria di massa che mediante NMR, ha permesso di descrivere in dettaglio i riarrangiamenti metabolici che cellule snf1Δ subiscono perché la crescita sia garantita nonostante i processi anabolici sopra descritti. Cellule snf1Δ in 2% glucosio accumulano glutammato in funzione di un maggiore consumo degli amminoacidi forniti nel terreno, evento necessario per il mantenimento della velocità di crescita del mutante. Il mutante inoltre accumula intermedi del ciclo degli acidi tricarbossilici e se trattato con antimicina A, un inibitore del della catena di trasporto degli elettroni, subisce un effetto deleterio in 2%, ma non in 5% glucosio. Il trattamento influenza negativamente crescita e contenuto di ATP e causa nel mutante aumento di NADH, dimostrandone la mancata riossidazione mitocondriale.

(2015). Role of Snf1/AMPK as regulator of cell cycle, signal transduction and metabolism in Saccharomyces cerevisiae. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

Role of Snf1/AMPK as regulator of cell cycle, signal transduction and metabolism in Saccharomyces cerevisiae

NICASTRO, RAFFAELE
2015

Abstract

Snf1 is a serine/threonine kinase required by the yeast S. cerevisiae to grow in nutrient-limited conditions and to utilize carbon sources alternative to glucose. In our laboratory we previously demonstrated that lack of Snf1 causes an impairment of the G1/S transition of the cell cycle and a defect in the expression of genes of the G1 phase, even in condition of glucose sufficiency (2% glucose). It was therefore investigated the involvement of Snf1 in three important cellular processes: cycle, signal transduction and metabolism. To demonstrate the necessity of the catalytic activity of Snf1 for a proper G1/S transition was utilized a Snf1-I132G strain, in which the catalytic activity of the kinase can be inhibited by the specific inhibitor 2NM-PP1. The impairment of the G1/S transition and of the transcription of G1 genes in this strain in the presence of the inhibitor was demonstrated performing α-factor release and elutriation experiments. Studying the involvement of Snf1 in the regulation of other signaling pathways it was identified, through CoIP/MS experiments, the interaction between Snf1 and adenylate cyclase (Cyr1), the enzyme responsible for the synthesis of cyclic AMP (cAMP), activator of PKA. The RAS Associating Domain of Cyr1, containing 2 putative Snf1 phosphorylation sites, was purified in E. coli and its in vitro phosphorylation by Snf1 was demonstrated. Moreover, in a Snf1-G53R strain, in which the kinase is constitutively active, we found a reduction of 50% of intracellular cAMP, together with the deregulation of the expression of PKA-dependent genes. We therefore hypothesized the existence of a crosstalk between the Snf1 and PKA pathways.To investigate the global role of Snf1 in conditions of nutritional sufficiency we performed a transcriptomic analysis (gene chip) of wt and snf1Δ cells grown in 2% and 5% glucose, evidencing that lack of Snf1 causes the deregulation of about 1000 genes in 2%, but not in 5% glucose. Among these there are glycolytic genes and therefore possible metabolic deregulations in the absence of Snf1 were investigated. snf1Δ cells grown in 2% glucose secrete more ethanol and acetate, in proportion to their growth rate, compared to the wt. This enhanced glycolytic activity is abolished, as observed for transcripts, in 5% glucose. We further demonstrated that in our growth condition snf1Δ cells accumulate fatty acids, as previously observed in low glucose, due to the lack of Snf1-dependent phosphorylation of acetyl-CoA carboxylase. An extended metabolic analysis, both through mass spectrometry and NMR, revealed in detail the metabolic rewiring occurring in snf1Δ cells to guarantee the growth in spite of the enhanced anabolic processes. snf1Δ cells in 2% glucose accumulate glutamate, coming from the degradation of supplemented amino acids, in an essential process to maintain the growth rate of the mutant. Moreover, the mutant accumulates TCA cycle intermediates and in 2%, but not 5% glucose, is negatively affected by treatment with antimycin A, inhibitor of the electron transport chain. The treatment impairs growth and ATP content and increases NADH in the mutant, demonstrating the necessity of its mitochondrial reoxidation.
COCCETTI, PAOLA
Saccharomyces cerevisiae, yeast, Snf1, AMPK, metabolism
BIO/10 - BIOCHIMICA
English
12-feb-2015
Scuola di dottorato di Scienze
BIOTECNOLOGIE INDUSTRIALI - 15R
27
2013/2014
open
(2015). Role of Snf1/AMPK as regulator of cell cycle, signal transduction and metabolism in Saccharomyces cerevisiae. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
PhD_unimib_071877.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/68465
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact