Fossil resources are the main source exploited by human society for the production of electricity and fuels, as well as raw materials for the production of fine and bulk chemicals. The gradual depletion of deposits, which in turn causes an increase in prices, along with the increasing demand and need for environmental sustainability have contributed to trigger the interest in alternative energy and chemical sources. Within this context, the present work aimed at the production of one relevant chemical, lactic acid, and two promising biofuels, butanol and isobutanol, exploiting Saccharomyces cerevisiae as cell factory and organic material derived from biomass as substrates. S. cerevisiae is a promising alternative microorganism for lactic acid production since it can grow at a lower pH than the lactic acid bacteria, the natural producers. This allows to partly avoid the use of bases and thus decreasing the costs associated with the recovery of the product, which must be in the acid form. Despite the high robustness of yeasts, the major limitation for a viable production of organic acids is the toxic effect of the very high concentrations of product reached during the process; therefore, in this work the tolerance of laboratory strains of S. cerevisiae to lactic acid and its production have been evaluated. In particular, the modulation of the expression of SAM2 has been studied. This gene encodes for the enzyme S-adenosylmethionine synthetase, responsible for the synthesis of S-adenosylmethionine, central cofactor of cellular metabolism. The deletion of SAM2 resulted in an increase in lactic acid tolerance, in the BY4741 genetic background, and in an increase of its production (~ 69 g/L, approximately 5% more than in the parental strain) in the industrial omolactic strain m850. Furthermore the effects of lactic acid exposure on the main biomolecule classes of S. cerevisiae were investigated. Remarkably, under stressful condition, protein aggregates and changes in membrane lipid composition were observed. Since OPI1 is involved in the biosynthetic pathway of phosphatidylcholine, the main membrane phospholipid, the effect of its deletion was evaluated. Remarkably, OPI1 deletion resulted in an increased lactic acid tolerance in the laboratory strain BY4741. Higher alcohols are considered as promising gasoline substitutes because of their high energy density and the possibility of their use in currently engine as well as storage and distribution using existing infrastructure. The aim of this study was the production of two higher alcohols, butanol and isobutanol, in laboratory strains of S. cerevisiae. Specifically, the attention was focused on the pathway of keto-acids that branches out from amino acid pathway. The keto-acid pathway appears to be promising since it might exploit as substrate the proteins accumulated during industrial production processes starting from lignocellulosic biomass pre-treatment. Villas-Boas (2005) proposed a metabolic model in which glycine, through glyoxylate, can be converted into α-ketovalerate which in turn can be converted into α-isoketovalerate. It is known from literature that the conversion of α-ketovalerate can generate butanol as well as the conversion of α-isoketovalerate generates isobutanol. Therefore, in the present work a novel pathway for the production of butanol and isobutanol from glycine was hypothesized and demonstrated in two different S. cerevisiae genetic background. In particular, starting from 15 g/L of glycine 92 mg/L of butanol and 58 mg/L of isobutanol have been obtained.

Le risorse fossili sono a oggi la principale fonte sfruttata dall’uomo per la produzione di energia elettrica e combustibili, nonché come materia prima per l’industria, in particolare quella chimica. Il progressivo esaurimento dei giacimenti, che a sua volta determina un innalzamento dei prezzi, insieme alla necessità di una maggior sostenibilità ambientale hanno contribuito ad aumentare l’interesse verso fonti alternative. All’interno di tale contesto si pone il presente lavoro, volto alla produzione sia di un composto chimico di rilevante importanza, l’acido lattico, che di due biocarburanti promettenti, il butanolo e l’isobutanolo, utilizzando Saccharomyces cerevisiae come cell factory e materia organica derivante da biomasse come substrati. S. cerevisiae è un microrganismo promettente per la produzione industriale di acido lattico poiché è in grado di crescere a pH inferiori rispetto ai batteri lattici, naturali produttori. Ciò permette di evitare almeno in parte l’uso di basi e dunque di diminuire i costi associati al recupero del prodotto che deve essere in forma acida. Tuttavia, il maggior limite per la produzione di acidi organici è rappresentato dall’effetto tossico delle alte concentrazioni di prodotto raggiunte durante il processo; per tali ragioni in questo lavoro è stata valutata sia la tolleranza di ceppi di laboratorio di S. cerevisiae all’acido lattico sia la sua produzione. In particolare, è stata valutata la modulazione dell’espressione del gene SAM2, codificante l’enzima S-adenosilmetionina sintetasi responsabile della sintesi dell’S-adenosilmetionina, cofattore centrale del metabolismo cellulare. La delezione di tale gene ha determinato sia un incremento della tolleranza all’acido, nel ceppo di laboratorio BY4741, che un incremento di circa il 5% della sua produzione (~69 g/L) nel ceppo industriale omolattico-fermentante m850. Inoltre, sono stati valutati gli effetti dell’esposizione all’acido lattico sulle principali classi di biomolecole di S. cerevisiae. In presenza dell’acido, sono stati osservati aggregati proteici ed effetti sulla composizione lipidica della membrana. Poiché il gene OPI1 è coinvolto nel pathway biosintetico della fosfatidilcolina, principale fosfolipide di membrana, è stato valutato l’effetto della sua delezione. Ciò ha determinato una maggior tolleranza all’acido lattico nel ceppo BY4741. Gli alcoli superiori possiedono delle proprietà chimico-fisiche che li rendono competitivi rispetto alla benzina e possono essere utilizzati direttamente come biocarburanti nei motori e distribuiti attraverso le infrastrutture esistenti. Nel presente lavoro ci si è focalizzati sulla produzione di butanolo e isobutanolo in ceppi di laboratorio di S. cerevisiae. Nello specifico, l’attenzione è stata volta al pathway dei chetoacidi, derivanti dagli amminoacidi. Tale via metabolica è promettente in quanto permette di sfruttare le proteine che si accumulano nel corso degli attuali processi produttivi di biocarburanti e biomateriali. Villas-Boas ha proposto un modello in cui a partire dall’amminoacido glicina, passando dal gliossilato, può generarsi il cheto-acido α-chetovalerato che a sua volta può essere convertito in α-isochetovalerato. Poiché in letteratura inoltre è riportata la conversione dell’α-chetovalerato in butanolo e dell’α-isochetovalerato in isobutanolo, nel presente lavoro è stato ipotizzato e dimostrato step by step il pathway di produzione di tali alcoli a partire da glicina in due diversi background genetici di S. cerevisiae. In particolare, a partire da 15 g/L di glicina sono stati ottenuti 92 mg/L di butanolo e 58 mg/L di isobutanolo.

(2015). Exploitation of Saccharomyces cerevisiae for the challenging conversion of renewable substrates into biofuels and chemicals. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

Exploitation of Saccharomyces cerevisiae for the challenging conversion of renewable substrates into biofuels and chemicals

BERTERAME, NADIA MARIA
2015

Abstract

Le risorse fossili sono a oggi la principale fonte sfruttata dall’uomo per la produzione di energia elettrica e combustibili, nonché come materia prima per l’industria, in particolare quella chimica. Il progressivo esaurimento dei giacimenti, che a sua volta determina un innalzamento dei prezzi, insieme alla necessità di una maggior sostenibilità ambientale hanno contribuito ad aumentare l’interesse verso fonti alternative. All’interno di tale contesto si pone il presente lavoro, volto alla produzione sia di un composto chimico di rilevante importanza, l’acido lattico, che di due biocarburanti promettenti, il butanolo e l’isobutanolo, utilizzando Saccharomyces cerevisiae come cell factory e materia organica derivante da biomasse come substrati. S. cerevisiae è un microrganismo promettente per la produzione industriale di acido lattico poiché è in grado di crescere a pH inferiori rispetto ai batteri lattici, naturali produttori. Ciò permette di evitare almeno in parte l’uso di basi e dunque di diminuire i costi associati al recupero del prodotto che deve essere in forma acida. Tuttavia, il maggior limite per la produzione di acidi organici è rappresentato dall’effetto tossico delle alte concentrazioni di prodotto raggiunte durante il processo; per tali ragioni in questo lavoro è stata valutata sia la tolleranza di ceppi di laboratorio di S. cerevisiae all’acido lattico sia la sua produzione. In particolare, è stata valutata la modulazione dell’espressione del gene SAM2, codificante l’enzima S-adenosilmetionina sintetasi responsabile della sintesi dell’S-adenosilmetionina, cofattore centrale del metabolismo cellulare. La delezione di tale gene ha determinato sia un incremento della tolleranza all’acido, nel ceppo di laboratorio BY4741, che un incremento di circa il 5% della sua produzione (~69 g/L) nel ceppo industriale omolattico-fermentante m850. Inoltre, sono stati valutati gli effetti dell’esposizione all’acido lattico sulle principali classi di biomolecole di S. cerevisiae. In presenza dell’acido, sono stati osservati aggregati proteici ed effetti sulla composizione lipidica della membrana. Poiché il gene OPI1 è coinvolto nel pathway biosintetico della fosfatidilcolina, principale fosfolipide di membrana, è stato valutato l’effetto della sua delezione. Ciò ha determinato una maggior tolleranza all’acido lattico nel ceppo BY4741. Gli alcoli superiori possiedono delle proprietà chimico-fisiche che li rendono competitivi rispetto alla benzina e possono essere utilizzati direttamente come biocarburanti nei motori e distribuiti attraverso le infrastrutture esistenti. Nel presente lavoro ci si è focalizzati sulla produzione di butanolo e isobutanolo in ceppi di laboratorio di S. cerevisiae. Nello specifico, l’attenzione è stata volta al pathway dei chetoacidi, derivanti dagli amminoacidi. Tale via metabolica è promettente in quanto permette di sfruttare le proteine che si accumulano nel corso degli attuali processi produttivi di biocarburanti e biomateriali. Villas-Boas ha proposto un modello in cui a partire dall’amminoacido glicina, passando dal gliossilato, può generarsi il cheto-acido α-chetovalerato che a sua volta può essere convertito in α-isochetovalerato. Poiché in letteratura inoltre è riportata la conversione dell’α-chetovalerato in butanolo e dell’α-isochetovalerato in isobutanolo, nel presente lavoro è stato ipotizzato e dimostrato step by step il pathway di produzione di tali alcoli a partire da glicina in due diversi background genetici di S. cerevisiae. In particolare, a partire da 15 g/L di glicina sono stati ottenuti 92 mg/L di butanolo e 58 mg/L di isobutanolo.
BRANDUARDI, PAOLA
Fossil resources are the main source exploited by human society for the production of electricity and fuels, as well as raw materials for the production of fine and bulk chemicals. The gradual depletion of deposits, which in turn causes an increase in prices, along with the increasing demand and need for environmental sustainability have contributed to trigger the interest in alternative energy and chemical sources. Within this context, the present work aimed at the production of one relevant chemical, lactic acid, and two promising biofuels, butanol and isobutanol, exploiting Saccharomyces cerevisiae as cell factory and organic material derived from biomass as substrates. S. cerevisiae is a promising alternative microorganism for lactic acid production since it can grow at a lower pH than the lactic acid bacteria, the natural producers. This allows to partly avoid the use of bases and thus decreasing the costs associated with the recovery of the product, which must be in the acid form. Despite the high robustness of yeasts, the major limitation for a viable production of organic acids is the toxic effect of the very high concentrations of product reached during the process; therefore, in this work the tolerance of laboratory strains of S. cerevisiae to lactic acid and its production have been evaluated. In particular, the modulation of the expression of SAM2 has been studied. This gene encodes for the enzyme S-adenosylmethionine synthetase, responsible for the synthesis of S-adenosylmethionine, central cofactor of cellular metabolism. The deletion of SAM2 resulted in an increase in lactic acid tolerance, in the BY4741 genetic background, and in an increase of its production (~ 69 g/L, approximately 5% more than in the parental strain) in the industrial omolactic strain m850. Furthermore the effects of lactic acid exposure on the main biomolecule classes of S. cerevisiae were investigated. Remarkably, under stressful condition, protein aggregates and changes in membrane lipid composition were observed. Since OPI1 is involved in the biosynthetic pathway of phosphatidylcholine, the main membrane phospholipid, the effect of its deletion was evaluated. Remarkably, OPI1 deletion resulted in an increased lactic acid tolerance in the laboratory strain BY4741. Higher alcohols are considered as promising gasoline substitutes because of their high energy density and the possibility of their use in currently engine as well as storage and distribution using existing infrastructure. The aim of this study was the production of two higher alcohols, butanol and isobutanol, in laboratory strains of S. cerevisiae. Specifically, the attention was focused on the pathway of keto-acids that branches out from amino acid pathway. The keto-acid pathway appears to be promising since it might exploit as substrate the proteins accumulated during industrial production processes starting from lignocellulosic biomass pre-treatment. Villas-Boas (2005) proposed a metabolic model in which glycine, through glyoxylate, can be converted into α-ketovalerate which in turn can be converted into α-isoketovalerate. It is known from literature that the conversion of α-ketovalerate can generate butanol as well as the conversion of α-isoketovalerate generates isobutanol. Therefore, in the present work a novel pathway for the production of butanol and isobutanol from glycine was hypothesized and demonstrated in two different S. cerevisiae genetic background. In particular, starting from 15 g/L of glycine 92 mg/L of butanol and 58 mg/L of isobutanol have been obtained.
Saccharomyces cerevisiae, Biorefinery, lactic acid, butanol and isobutanol
CHIM/11 - CHIMICA E BIOTECNOLOGIA DELLE FERMENTAZIONI
English
Scuola di dottorato di Scienze
BIOTECNOLOGIE INDUSTRIALI - 15R
27
2013/2014
(2015). Exploitation of Saccharomyces cerevisiae for the challenging conversion of renewable substrates into biofuels and chemicals. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
PhD_unimib_706115.pdf

Accesso Aperto

Descrizione: Tesi dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 8.01 MB
Formato Adobe PDF
8.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/67452
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact