Subject of this thesis is the synthesis and characterization of materials for Anion Exchange Membrane (AEM) Water Electrolyzers (WE). In particular, research work focused on polymeric membrane electrolytes belonging to the class of Poly(aryl piperidinium)s (PAP). The production of H2 by mean of an AEM WE allows to combine the advantages of traditional alkaline WE and proton exchange membrane WE. However, the development of AEM WE was delayed by the absence of AEM with sufficient performances to be competitive with the traditional WE technologies. In particular, AEM degradation in the harsh alkaline environment keeps being the main obstacle for AEM WE to become an industrial reality. Last ten years of research have made important progresses in the search for alkali stable AEM new chemistries. In 2018 PAP were first reported, these compounds showed to have an unprecedented chemical stability, which, together with the optimal conductivity and mechanical properties, makes them the most promising class of AEM for WE. The thesis begins with a necessary overview of the technical aspects concerning H2 in the global economy. Current and prospected H2 industrial uses and production processes, as well as transportation and storage methods are described in chapter 1. Chapter 2 focuses on water electrolysis, starting with a dissertation on theorical and practical aspects concerning WE thermodynamics and electrochemistry, followed by the description of the main WE technologies. In chapter 3 the theory of ion transport, with special attention to the hydroxide transport inside polymeric membranes, is exposed, then the most important AEM properties are described. The theory of Donnan’s equilibrium is also explained, a simple model which exploits Donnan’s equilibrium to describe AEM uptake of co-ions in KOH solution is presented. Finally, the chapter deals with the chemistry of AEMs and, more in the detail, PAPs. Experimental procedures for PAP synthesis and AEM characterization are described in chapter 4. The development and optimization of characterization procedures was a consistent part of the research work during the PhD program. These are not only a list of experimental conditions like those generally reported in scientific papers, but a meticulous description of each aspect necessary to correctly perform the measurements. This was done with the aim to allow facile reproducibility of the experiment to those not skilled in the art. Specific attention was given to AEM conductivity measurements, which are notoriously difficult to perform accurately. Procedures for both in-plane and, with an innovative method, though-plane conductivity measurements are described. The description of the design, construction, and utilization of a WE cell test station is provided in chapter 5. WE cells, thermoregulation, hydraulic circuit, membrane/electrode assembly, and measurement routines were designed and optimized as a part of the PhD program. The chapter also includes the manufacture and cell testing of AEM WE electrodes with PAP-based binder synthetized at UNIMIB. This work has been carried out at DeNora industries. Last chapter is dedicated to the results on PAP characterization. Poly(biphenyl piperidinium) (PBP) synthesis characterization and WE cell test are discussed. PBP is the simplest among PAP. Due to the low molecular weight achieved in the first work on PAP, this was dissolving in water, it was therefore not possible to cast PBP membrane and thereby characterize them. A synthetic procedure to achieve high molecular weight PBP was optimized and it was possible to provide a first PBP AEM characterization. Following work focused on Poly(Terphenyl Piperidinium) (PTP) most commonly used as PAP benchmark. PTP degradation in water and different KOH concentration was quantified. Also, O2 presence was found not to have a significant impact on PTP degradation.
Oggetto della tesi è la sintesi e caratterizzazione di materiali per elettrolizzatori di acqua (WE) a membrana a scambio anionico (AEM). Il lavoro si concentra principalmente su una classe di elettroliti polimerici, i poli(aril piperidinii) (PAP). La produzione di H2 tramite AEM WE permette di unire i vantaggi di elettrolizzatori alcalini e a membrana protonica. Lo sviluppo di AEM WE è stato ritardato a cause delle scarse proprietà delle AEM, che non permettono di raggiungere prestazioni competitive in confronto alle tecnologie WE tradizionali. La degradazione delle AEM in ambiente alcalino è infatti il principale ostacolo alla industrializzazione di questi dispositivi. Negli ultimi anni la ricerca scientifica ha fatto enormi progressi per quanto riguarda la sintesi di nuove AEM basate su composti resistenti alla nucleofilicità dello ione idrossido. Tra questi, i PAP vengono scoperti nel 2018; hanno una stabilità chimica senza precedenti, che, insieme alla ottima conducibilità e resistenza meccanica, ne fanno la classe di AEM più promettente. La tesi inizia con l’analizzare diversi aspetti tecnici sull’H2 nell’economia globale. Nel capitolo 1 vengono descritti gli usi e le tecniche di produzione di H2 attuali e futuri oltre che i metodi di trasporto e stoccaggio. Il capitolo 2 si concentra sull’elettrolisi dell’acqua. Vengono trattate basi teoriche e aspetti pratici della termodinamica e dell’elettrochimica di questa reazione. In seguito vengono descritte le diverse tecnologie WE. Nel capitolo 3 viene descritta la teoria del trasporto di ioni, con attenzione particolare al caso delle membrane polimeriche. Poi vengono descritte le più importanti proprietà delle membrane a scambio anionico. La teoria dell’equilibrio di Donnan viene spiegata ed utilizzata per creare un semplice modello sull’assorbimento di co-ioni nelle AEM. Il capitolo si conclude con la descrizione della chimica delle AEM e, più nel dettaglio, dei PAP. Le procedure sperimentali per la sintesi di PAP e la caratterizzazione di AEM sono descritti nel capitolo 4. Lo sviluppo e ottimizzazione di procedure di caratterizzazione è stata una parte considerevole del lavoro di ricerca svolto durante il dottorato. Non vengono descritte semplicemente un elenco di condizioni sperimentali, ma una meticolosa descrizione di ogni aspetto necessario per il corretto svolgimento degli esperimenti. Questo per permettere una facile riproducibilità delle misure descritte ad una persona senza previa esperienza nel campo. Una sezione consistente del capitolo è dedicata a misure di conducibilità delle AEM, che sono notoriamente difficili da svolgere con accuratezza. Procedure per la misura di conducibilità “in-plane” e, con un metodo innovativo, “trough-plane” sono descritte. Nel capitolo 5 viene trattata la progettazione, realizzazione e istruzioni per l’utilizzo di una stazione per i test in cella di WE. La cella per l’elettrolisi, il circuito idraulico, la termoregolazione, l’assemblaggio della cella con elettrodi e membrana, e le routine di misure elettriche sono state progettate e sviluppate come parte del lavoro di dottorato. Il capitolo include anche il lavoro svolto presso industrie DeNora: la manifattura e test in cella di elettrodi per AEM WE realizzati con binder PAP. Il capitolo finale è dedicato ai risultati sulla manifattura e caratterizzazione di PAP. Una procedura per ottenere PBP con alto peso molecolare è stata sviluppata ed è stato quindi possibile fornire una prima caratterizzazione di questo composto, che mancava nella prima pubblicazione sui PAP a causa di uno swelling eccessivo. Viene poi presentato uno studio sulla degradazione in ambiente alcalino del poli(terfenil piperidinio) (PTP), il composto di riferimento per la ricerca sui PAP. La degradazione del PTP in acqua e a diverse concentrazioni di KOH è stata quantificata. Inoltre, viene provato che la presenza di ossigeno non influenza la degradazione del PTP.
(2025). Poly(aryl piperidinium) Hydroxide Exchange Membranes for Water Electrolysis. (Tesi di dottorato, , 2025).
Poly(aryl piperidinium) Hydroxide Exchange Membranes for Water Electrolysis
CAIELLI, TOMMASO
2025
Abstract
Subject of this thesis is the synthesis and characterization of materials for Anion Exchange Membrane (AEM) Water Electrolyzers (WE). In particular, research work focused on polymeric membrane electrolytes belonging to the class of Poly(aryl piperidinium)s (PAP). The production of H2 by mean of an AEM WE allows to combine the advantages of traditional alkaline WE and proton exchange membrane WE. However, the development of AEM WE was delayed by the absence of AEM with sufficient performances to be competitive with the traditional WE technologies. In particular, AEM degradation in the harsh alkaline environment keeps being the main obstacle for AEM WE to become an industrial reality. Last ten years of research have made important progresses in the search for alkali stable AEM new chemistries. In 2018 PAP were first reported, these compounds showed to have an unprecedented chemical stability, which, together with the optimal conductivity and mechanical properties, makes them the most promising class of AEM for WE. The thesis begins with a necessary overview of the technical aspects concerning H2 in the global economy. Current and prospected H2 industrial uses and production processes, as well as transportation and storage methods are described in chapter 1. Chapter 2 focuses on water electrolysis, starting with a dissertation on theorical and practical aspects concerning WE thermodynamics and electrochemistry, followed by the description of the main WE technologies. In chapter 3 the theory of ion transport, with special attention to the hydroxide transport inside polymeric membranes, is exposed, then the most important AEM properties are described. The theory of Donnan’s equilibrium is also explained, a simple model which exploits Donnan’s equilibrium to describe AEM uptake of co-ions in KOH solution is presented. Finally, the chapter deals with the chemistry of AEMs and, more in the detail, PAPs. Experimental procedures for PAP synthesis and AEM characterization are described in chapter 4. The development and optimization of characterization procedures was a consistent part of the research work during the PhD program. These are not only a list of experimental conditions like those generally reported in scientific papers, but a meticulous description of each aspect necessary to correctly perform the measurements. This was done with the aim to allow facile reproducibility of the experiment to those not skilled in the art. Specific attention was given to AEM conductivity measurements, which are notoriously difficult to perform accurately. Procedures for both in-plane and, with an innovative method, though-plane conductivity measurements are described. The description of the design, construction, and utilization of a WE cell test station is provided in chapter 5. WE cells, thermoregulation, hydraulic circuit, membrane/electrode assembly, and measurement routines were designed and optimized as a part of the PhD program. The chapter also includes the manufacture and cell testing of AEM WE electrodes with PAP-based binder synthetized at UNIMIB. This work has been carried out at DeNora industries. Last chapter is dedicated to the results on PAP characterization. Poly(biphenyl piperidinium) (PBP) synthesis characterization and WE cell test are discussed. PBP is the simplest among PAP. Due to the low molecular weight achieved in the first work on PAP, this was dissolving in water, it was therefore not possible to cast PBP membrane and thereby characterize them. A synthetic procedure to achieve high molecular weight PBP was optimized and it was possible to provide a first PBP AEM characterization. Following work focused on Poly(Terphenyl Piperidinium) (PTP) most commonly used as PAP benchmark. PTP degradation in water and different KOH concentration was quantified. Also, O2 presence was found not to have a significant impact on PTP degradation.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_893290.pdf
accesso aperto
Descrizione: Tesi _Finale _Revisionata
Tipologia di allegato:
Doctoral thesis
Dimensione
6 MB
Formato
Adobe PDF
|
6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.