This thesis explores the connection between multiphase gas, galaxies, and large-scale environments within the Cosmic Web. While stellar mass is known to influence galaxy evolution, the roles of cosmic gas and large-scale structures remain less understood. This work addresses four key questions: i) what are the properties of multiphase gas around low-mass galaxies? ii) what characterizes the gas surrounding submillimeter galaxies, often undetected in optical surveys? iii) how does the large-scale galaxy environment shape the properties of the gas? iv) how is galaxy growth regulated by the large-scale environment in extreme, overdense regions where filaments intersect? To extend the study of the gas-galaxy relationship to low-mass galaxies at z~3–4.5, we used the MUSE Analysis of Gas around Galaxies (MAGG) survey, consisting of 28 quasar fields observed with MUSE. Inspecting the high-resolution optical-to-infrared spectra of the quasars, we identified 220 CIV, 108 SiIV and 47 MgII systems in absorption, tracers of different gas phases, and linked them to more than 1000 low-mass Lyα emitters (LAEs). For the first time, we measured the luminosity functions and cross-correlation of LAEs connected to these absorbers, showing that LAEs cluster near absorbing gas. We identified three components in their gaseous structures: i) the circumgalacitc medium; ii) the overdense gas along filaments; iii) a diffuse, but enriched component traced by weak CIV systems not necessarily associated galaxies. More, most LAEs (70%) are in groups rather than isolation. We found that it is ~3 times more likely to detect MgII or CIV gas around galaxies in groups, rather than around isolated ones. However, this excess varies with cosmic time depending on the gas phase: the MgII excess persists, while that of CIV gas fades at z<2. Further insights emerged from studying dusty galaxies that optical surveys often miss. In the MUSE Ultra Deep Field (MUDF) survey, we detected six submillimeter galaxies at 1.2mm using ALMA. We linked them to the gas observed in absorption in the sightlines of a pair of z~3 quasars, and found 100% association rate within 500 km/s. Four of these galaxies are in groups, in which they are among the most massive members and are often aligned with the gaseous structures in velocity space, suggesting that they possibly trace the center of the gravitational potential well of the gas structures. To complete this picture, the effects of the large-scale environment are expected to peak in extreme overdensities, such as protoclusters. Around a bright z~3.25 quasar, we identified one of the largest overdensities of star-forming galaxies, submillimeter galaxies, and AGNs. These are connected by 4 cMpc-long gas filaments, converging to a cosmic web node and seen in Lyα emission. Using MUSE, HST, JWST, ALMA, and Chandra data, we found a significant excess of massive galaxies compared to the field, suggesting more efficient or rapid mass assembly. Nonetheless, their star formation rates match the field main sequence, indicating that star formation is driven by local properties correlated with their stellar mass, rather than the large-scale environment. Finally, we used FORS2 photometry to select Lyman Break Galaxies across a 36 times larger area. We found that the overdensity of these galaxies is aligned with the Lya emitting gas and that of star-forming sources identified in the inner region of 4x4 cMpc2, suggesting that this structure is likely extended up to a few tens of cMpc. In conclusion, this thesis extend the study of the connection bewtween the multiphase cosmic gas and different populations of galaxies -from low-mass LAEs to submillimiter galaxies to protoclusters- and provides compelling evidence that both the gas and the large-scale environment plays a key role in regulating galaxy evolution.

Questa tesi esplora la connessione tra gas cosmico, galassie e strutture su larga scala. Sebbene noto che la massa stellare influenzi l'evoluzione delle galassie, i ruoli del gas cosmico e delle strutture su larga scala restano meno chiari. Questo lavoro risponde a quattro domande chiave: i) quali sono le proprietà del gas attorno a galassie di bassa massa? ii) quali caratteristiche ha il gas che circonda le galassie submillimetriche (SMGs), spesso non rilevate in survey ottiche? iii) come le strutture su larga scala influenzano le proprietà del gas? iv) come l’ambiente regola la crescita delle galassie in regioni estreme e ricche di galassie all'intersezione dei filamenti? Per estendere lo studio della relazione gas-galassie a sorgenti di bassa massa a z~3–4.5, abbiamo utilizzato la survey MUSE Analysis of Gas around Galaxies (MAGG), che comprende 28 campi centrati su quasars e osservati con MUSE. Analizzando gli spettri ottico-infrarossi dei quasars, abbiamo identificato 220 sistemi CIV, 108 SiIV e 47 MgII in assorbimento, traccianti diverse fasi del gas, e li abbiamo collegati a oltre 1000 Lyα Emitters (LAEs). Per la prima volta, abbiamo misurato le funzioni di luminosità e la cross-correlazione dei LAEs associati a questi assorbitori, mostrando che i LAEs si tovano preferenzialmente vicino al gas. Abbiamo identificato tre componenti nelle strutture intorno ai LAEs: i) il mezzo circumgalattico; ii) il gas lungo i filamenti; iii) una componente diffusa e arricchita di metalli tracciata da deboli sistemi CIV non necessariamente associati a galassie. Inoltre, la maggior parte dei LAEs (70%) si trova in gruppi piuttosto che in isolati. Abbiamo trovato che è circa tre volte più probabile rilevare gas MgII o CIV attorno a galassie in gruppi rispetto a quelle isolate, con un eccesso che varia nel tempo a seconda del tracciante: quello del MgII persiste, mentre quello del CIV diminuisce a z<2. Altre informazioni emergono dallo studio di galassie ricche di polvere, spesso non rilevate dalle survey ottiche. Nel MUSE Ultra Deep Field (MUDF), abbiamo rilevato sei SMGs a 1.2mm con ALMA. Collegandole al gas in assorbimento osservato lungo le linee di vista di una coppia di quasar a z~3, abbiamo trovato un tasso di associazione del 100% entro 500 km/s. Quattro di queste galassie si trovano in gruppi, risultando spesso allineate con il gas lungo la linea di vista, suggerendo che traccino il centro del potenziale gravitazionale delle stutture. Gli effetti delle strutture su larga scala sono più marcati in regioni estremamente ricche di galassie, come i proto-ammassi. Attorno a un quasar a z~3.25, abbiamo identificato una delle maggiori sovradensità di galassie, SMGs e AGNs,. Queste sono connesse da filamenti di gas lunghi 4 cMpc che convergono verso un nodo della cosmic web visibile in emissione Lyα. Con dati MUSE, HST, JWST, ALMA e Chandra, abbiamo trovato un eccesso di galassie massicce rispetto a regioni casuali dell'Universo, indicando che hanno assemblato la propria massa più rapidamente o in modo più efficiente. Tuttavia, i tassi di formazione stellare sono consistenti con la sequenza principale, suggerendo che la formazione stellare sia guidata dalle proprietà locali e correlate alla massa, piuttosto che dall’ambiente. Infine, abbiamo selezionato le Lyman Break Galaxies in un'area 36 volte più estesa con la fotometria di FORS2, e scoperto che l’eccesso di galassie si allinea con il gas osservato in Lyα e con le sorgenti identificate nell’area di 4x4 cMpc². Questo suggerisce che la struttura si estende verosimilmente fino a decine di cMpc. In conclusione, questa tesi estende lo studio del legame tra il gas cosmico e diverse popolazioni di galassie, dai LAEs a bassa massa alle SMGs fino ai proto-ammassi, dimostrando che sia il gas sia le strutture su larga scala giocano un ruolo chiave nell’evoluzione delle galassie.

(2025). Galaxy evolution and the large-scale structure of the universe at high redshift. (Tesi di dottorato, , 2025).

Galaxy evolution and the large-scale structure of the universe at high redshift

GALBIATI, MARTA
2025

Abstract

This thesis explores the connection between multiphase gas, galaxies, and large-scale environments within the Cosmic Web. While stellar mass is known to influence galaxy evolution, the roles of cosmic gas and large-scale structures remain less understood. This work addresses four key questions: i) what are the properties of multiphase gas around low-mass galaxies? ii) what characterizes the gas surrounding submillimeter galaxies, often undetected in optical surveys? iii) how does the large-scale galaxy environment shape the properties of the gas? iv) how is galaxy growth regulated by the large-scale environment in extreme, overdense regions where filaments intersect? To extend the study of the gas-galaxy relationship to low-mass galaxies at z~3–4.5, we used the MUSE Analysis of Gas around Galaxies (MAGG) survey, consisting of 28 quasar fields observed with MUSE. Inspecting the high-resolution optical-to-infrared spectra of the quasars, we identified 220 CIV, 108 SiIV and 47 MgII systems in absorption, tracers of different gas phases, and linked them to more than 1000 low-mass Lyα emitters (LAEs). For the first time, we measured the luminosity functions and cross-correlation of LAEs connected to these absorbers, showing that LAEs cluster near absorbing gas. We identified three components in their gaseous structures: i) the circumgalacitc medium; ii) the overdense gas along filaments; iii) a diffuse, but enriched component traced by weak CIV systems not necessarily associated galaxies. More, most LAEs (70%) are in groups rather than isolation. We found that it is ~3 times more likely to detect MgII or CIV gas around galaxies in groups, rather than around isolated ones. However, this excess varies with cosmic time depending on the gas phase: the MgII excess persists, while that of CIV gas fades at z<2. Further insights emerged from studying dusty galaxies that optical surveys often miss. In the MUSE Ultra Deep Field (MUDF) survey, we detected six submillimeter galaxies at 1.2mm using ALMA. We linked them to the gas observed in absorption in the sightlines of a pair of z~3 quasars, and found 100% association rate within 500 km/s. Four of these galaxies are in groups, in which they are among the most massive members and are often aligned with the gaseous structures in velocity space, suggesting that they possibly trace the center of the gravitational potential well of the gas structures. To complete this picture, the effects of the large-scale environment are expected to peak in extreme overdensities, such as protoclusters. Around a bright z~3.25 quasar, we identified one of the largest overdensities of star-forming galaxies, submillimeter galaxies, and AGNs. These are connected by 4 cMpc-long gas filaments, converging to a cosmic web node and seen in Lyα emission. Using MUSE, HST, JWST, ALMA, and Chandra data, we found a significant excess of massive galaxies compared to the field, suggesting more efficient or rapid mass assembly. Nonetheless, their star formation rates match the field main sequence, indicating that star formation is driven by local properties correlated with their stellar mass, rather than the large-scale environment. Finally, we used FORS2 photometry to select Lyman Break Galaxies across a 36 times larger area. We found that the overdensity of these galaxies is aligned with the Lya emitting gas and that of star-forming sources identified in the inner region of 4x4 cMpc2, suggesting that this structure is likely extended up to a few tens of cMpc. In conclusion, this thesis extend the study of the connection bewtween the multiphase cosmic gas and different populations of galaxies -from low-mass LAEs to submillimiter galaxies to protoclusters- and provides compelling evidence that both the gas and the large-scale environment plays a key role in regulating galaxy evolution.
CANTALUPO, SEBASTIANO
Galassie: evoluzione; Galassie: aloni; Alto-Redshift; Absorption lines; Intergalactic medium
Galaxies: evolution; Galaxies: halos; High-Redshift; Absorption lines; Intergalactic medium
FIS/05 - ASTRONOMIA E ASTROFISICA
English
20-feb-2025
37
2023/2024
open
(2025). Galaxy evolution and the large-scale structure of the universe at high redshift. (Tesi di dottorato, , 2025).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_800704.pdf

accesso aperto

Descrizione: Galaxy evolution and the large-scale structure of the universe at high redshift
Tipologia di allegato: Doctoral thesis
Dimensione 11.63 MB
Formato Adobe PDF
11.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/543161
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact