The development of superconducting transmon qubits represents a significant advancement in the field of quantum technology, particularly in quantum computing and quantum sensing. The ability of transmon qubits to interact strongly with electromagnetic fields, coupled with their high sensitivity to weak signals, makes them a great choice for investigating the signature signals of dark matter. The research presented in this thesis focuses on the design, simulation, and experimental characterization of superconducting transmon qubits, with the goal of optimizing their performance for quantum sensing applications. Various techniques can be employed to detect the weak signals generated by the interaction of transmon qubits with light dark matter, specifically hidden photons and axions. Hidden photons are hypothetical particles predicted in certain extensions of the Standard Model of particle physics and they arise in theories involving hidden or dark sectors, which are composed of particles that interact very weakly with known particles. Axions, hypothetical particles proposed as a solution to the strong CP problem in quantum chromodynamics, are thought to interact weakly with photons. By leveraging the transmon qubits’ strong coupling to microwave photons, these devices can be configured to detect the small electromagnetic signals that arise from the dark photon or axion interactions. A significant portion of the work is devoted to the design, testing, and characterization of transmon qubit devices. The first device, composed of two transmon qubits coupled to readout resonators, serves as a validation platform for simulation techniques that allow for precise control of qubit-resonator interactions. This device demonstrated that accurate tuning of qubit frequencies and couplings is achievable, a critical requirement for applications in quantum computing and design of quantum sensing detectors. However, challenges were encountered in the form of reduced coherence times, which were attributed to material losses and suboptimal measurement setups. The second device, a transmon qubit directly coupled to a transmission line, can be employed both as a power sensor and single-photon source in the microwave regime. In particular, single-photon sources are critical for the calibration of itinerant photon detectors, which are used in dark matter searches to detect rare photon events. Additionally, the ability to generate single photons on demand is crucial for the development of quantum networks, enabling secure communication channels based on quantum key distribution (QKD). The integration of transmon qubits into quantum networks represents a key step forward in the realization of large-scale quantum communication systems, where the precise control of microwave photons is essential. The device presented in this thesis is capable of precise absolute power measurement in the range of -160 dBm to -120 dBm at approximately 7.9 GHz, making it a valuable tool for quantum communication and calibration applications. The same device can also be employed as a single-photon source and its emission has been characterized, demonstrating its quantum nature. The source emission density matrix was reconstructed and found compatible with a single-photon statistic with a fidelity of about 62%. In summary, this thesis demonstrates the potential of superconducting transmon qubits as powerful tools for both quantum information processing and quantum sensing. The development of these devices not only advances the field of quantum computing, where transmon qubits are a leading candidate for scalable, fault-tolerant quantum processors, but also expands their usage in fundamental physics experiments, particularly in the search for dark matter. As the devices developed in this work continue to be refined, they will enable more precise experiments, contributing to a deeper understanding of dark matter and its role in the universe.
Lo sviluppo dei qubit transmon superconduttivi rappresenta un avanzamento significativo nel campo delle tecnologie quantistiche, in particolare nel calcolo quantistico e nella rivelazione quantistica. La capacità dei transmon di interagire intensamente con i campi elettromagnetici, li rende una scelta eccellente per indagare i segnali caratteristici della materia oscura. La ricerca presentata in questa tesi si concentra sulla progettazione, simulazione e caratterizzazione sperimentale di qubit transmon, con l'obiettivo di ottimizzarne le prestazioni per applicazioni nel quantum sensing. Diverse tecniche possono essere impiegate per rivelare i segnali deboli generati dall'interazione dei transmon con la materia oscura leggera, in particolare fotoni nascosti e assioni. I fotoni nascosti sono particelle ipotetiche previste in alcune estensioni del Modello Standard della fisica delle particelle e sorgono in teorie che coinvolgono settori nascosti o oscuri, composti da particelle che interagiscono molto debolmente con quelle conosciute. Gli assioni, particelle ipotetiche proposte come soluzione al problema CP forte nella cromodinamica quantistica, si pensa che interagiscano debolmente con i fotoni. Sfruttando il forte accoppiamento dei transmon con i fotoni a microonde, questi dispositivi possono essere configurati per rivelare i piccoli segnali elettromagnetici che derivano dalle interazioni dei fotoni oscuri o degli assioni. Una parte significativa del lavoro è dedicata alla progettazione, test e caratterizzazione di transmon. Il primo dispositivo, composto da due transmon accoppiati a risonatori di lettura, funge da piattaforma di validazione per tecniche di simulazione che permettono il controllo preciso delle interazioni qubit-risonatore. Questo dispositivo ha dimostrato che è possibile ottenere una buona compatibilità delle frequenze dei qubit e degli accoppiamenti, un requisito fondamentale per le applicazioni nel calcolo quantistico e nella progettazione di sensori quantistici. Il secondo dispositivo, un transmon accoppiato direttamente a una linea di trasmissione, può essere utilizzato sia come sensore di potenza sia come sorgente di singoli fotoni nel regime delle microonde. In particolare, le sorgenti di singoli fotoni sono fondamentali per la calibrazione dei rivelatori di fotoni itineranti, utilizzati nelle ricerche sulla materia oscura per rivelare eventi rari di fotoni. Inoltre, la capacità di generare singoli fotoni su richiesta è cruciale per lo sviluppo di reti quantistiche, che abilitano canali di comunicazione sicuri basati sulla distribuzione quantistica delle chiavi. Il dispositivo presentato in questa tesi è capace di misure di potenza assoluta precise nell'intervallo tra -160 dBm e -120 dBm a circa 7.9 GHz, rendendolo uno strumento prezioso per applicazioni di comunicazione quantistica e calibrazione. Lo stesso dispositivo può anche essere impiegato come sorgente di singoli fotoni e la sua emissione è stata caratterizzata dimostrando la sua natura quantistica. La matrice di densità dell'emissione della sorgente è stata ricostruita e risulta compatibile con una statistica di singoli fotoni con una fedeltà di circa l'62%. In sintesi, questa tesi dimostra il potenziale dei transmon come strumenti potenti sia per l'elaborazione dell'informazione quantistica sia per la rivelazione quantistica. Lo sviluppo di questi dispositivi non solo fa avanzare il campo del calcolo quantistico, dove i transmon sono tra i principali candidati per processori quantistici scalabili e tolleranti agli errori, ma ne espande anche l'utilizzo negli esperimenti di fisica fondamentale, in particolare nella ricerca della materia oscura. Man mano che i dispositivi sviluppati in questo lavoro continueranno a essere perfezionati, essi consentiranno esperimenti sempre più precisi, contribuendo a una comprensione più approfondita della materia oscura e del suo ruolo nell'universo.
(2025). Development of superconducting transmon qubits for quantum sensing applications. (Tesi di dottorato, , 2025).
Development of superconducting transmon qubits for quantum sensing applications
LABRANCA, DANILO
2025
Abstract
The development of superconducting transmon qubits represents a significant advancement in the field of quantum technology, particularly in quantum computing and quantum sensing. The ability of transmon qubits to interact strongly with electromagnetic fields, coupled with their high sensitivity to weak signals, makes them a great choice for investigating the signature signals of dark matter. The research presented in this thesis focuses on the design, simulation, and experimental characterization of superconducting transmon qubits, with the goal of optimizing their performance for quantum sensing applications. Various techniques can be employed to detect the weak signals generated by the interaction of transmon qubits with light dark matter, specifically hidden photons and axions. Hidden photons are hypothetical particles predicted in certain extensions of the Standard Model of particle physics and they arise in theories involving hidden or dark sectors, which are composed of particles that interact very weakly with known particles. Axions, hypothetical particles proposed as a solution to the strong CP problem in quantum chromodynamics, are thought to interact weakly with photons. By leveraging the transmon qubits’ strong coupling to microwave photons, these devices can be configured to detect the small electromagnetic signals that arise from the dark photon or axion interactions. A significant portion of the work is devoted to the design, testing, and characterization of transmon qubit devices. The first device, composed of two transmon qubits coupled to readout resonators, serves as a validation platform for simulation techniques that allow for precise control of qubit-resonator interactions. This device demonstrated that accurate tuning of qubit frequencies and couplings is achievable, a critical requirement for applications in quantum computing and design of quantum sensing detectors. However, challenges were encountered in the form of reduced coherence times, which were attributed to material losses and suboptimal measurement setups. The second device, a transmon qubit directly coupled to a transmission line, can be employed both as a power sensor and single-photon source in the microwave regime. In particular, single-photon sources are critical for the calibration of itinerant photon detectors, which are used in dark matter searches to detect rare photon events. Additionally, the ability to generate single photons on demand is crucial for the development of quantum networks, enabling secure communication channels based on quantum key distribution (QKD). The integration of transmon qubits into quantum networks represents a key step forward in the realization of large-scale quantum communication systems, where the precise control of microwave photons is essential. The device presented in this thesis is capable of precise absolute power measurement in the range of -160 dBm to -120 dBm at approximately 7.9 GHz, making it a valuable tool for quantum communication and calibration applications. The same device can also be employed as a single-photon source and its emission has been characterized, demonstrating its quantum nature. The source emission density matrix was reconstructed and found compatible with a single-photon statistic with a fidelity of about 62%. In summary, this thesis demonstrates the potential of superconducting transmon qubits as powerful tools for both quantum information processing and quantum sensing. The development of these devices not only advances the field of quantum computing, where transmon qubits are a leading candidate for scalable, fault-tolerant quantum processors, but also expands their usage in fundamental physics experiments, particularly in the search for dark matter. As the devices developed in this work continue to be refined, they will enable more precise experiments, contributing to a deeper understanding of dark matter and its role in the universe.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_813575.pdf
accesso aperto
Descrizione: Tesi definitiva
Tipologia di allegato:
Doctoral thesis
Dimensione
19.69 MB
Formato
Adobe PDF
|
19.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.