The increasing demand for sustainability in the tire industry has intensified the search for renewable alternatives to fossil-based materials, with a particular focus on reinforcing fillers. Traditionally, carbon black (CB) has been widely used due to its reinforcing properties, but its production contributes significantly to environmental issues, such as emissions and the use of fossil-based materials. To mitigate these issues, the use of bio-based materials as reinforcing fillers has gathered increasing attention in recent years. Lignin is an abundant, cheap, and bio-based material, but its application in rubber composites has been limited by poor filler-matrix interactions, leading to degraded mechanical properties. This study explores the use of bio-based lignin as a renewable filler to replace carbon black, highlighting both the advantages and challenges associated with its integration into rubber compounds. To overcome its limitations, both physical and chemical modifications of lignin were investigated, aiming to enhance its compatibility with natural rubber. The physical modifications focused on the preparation of lignin nanoparticles (LNPs) and their dispersion in the rubber matrix by optimizing particle size and morphology. Spherical LNPs were prepared via anti-solvent precipitation and were incorporated into rubber compounds through either dry-mixing or pre-dispersion in natural rubber latex, with the latter showing better dispersion in the rubber matrix. While LNPs alone did not match the reinforcing capabilities of CB, hybrid systems combining LNPs and CB offered a viable solution. Smaller LNPs with larger surface areas provided better reinforcement, but the thermoplastic nature of lignin, remained a challenge due to the softer particles. In parallel, chemical modifications aimed to improve filler-matrix adhesion by functionalizing the lignin surface. Glycidylation of lignin was studied and a greener mechanochemical method was developed. This method minimized waste and reduced the use of harmful reactants, aligning with the project’s sustainability goals. By reacting phenolic and carboxylic groups of lignin with epichlorohydrin, complete derivatization was achieved. Fractionation of lignin was also explored, allowing to produce modified lignin molecules with small molecular weight and high oxirane content, ideal for creating lignin-based crosslinkers. Core-shell LNPs were then developed, where a core of lignin was coated with a shell of smaller molecules that were previously glycidylated. This process allowed to use significantly fewer reactants than traditional methods used for the preparation of surface functionalized LNPs. The curing of epoxides on the surface of these core-shell particles improved their stability and structure, resulting in stiffer particles better suited for reinforcing rubber. Testing these advanced LNPs in rubber composites revealed improved mechanical properties, particularly in tensile strength and dynamic performance, with reduced heat build-up and lower hysteresis, enabling significant CB substitution without sacrificing mechanical properties. Further functionalization, such as incorporating surface compatibilizers or bio-based crosslinkers, was also explored and holds promise for even greater improvements in mechanical properties, reinforcing the potential of lignin as a sustainable, high-performance filler for the tire industry.

La crescente domanda di prodotti sostenibili, anche nel settore degli pneumatici ha intensificato la ricerca di alternative rinnovabili ai materiali di origine fossile, con un focus particolare sui filler rinforzanti. Tradizionalmente, il nero di carbonio (CB) è stato largamente utilizzato per le sue proprietà rinforzanti, ma la sua produzione comporta impatti ambientali significativi, come le emissioni e l'impiego di materiali fossili. Negli ultimi anni, l’uso di materiali sostenibili come filler rinforzanti ha ottenuto un’attenzione crescente per mitigare questi problemi. La lignina, un materiale bio-based, economico e abbondante, presenta tuttavia limitazioni nelle applicazioni in compositi di gomma a causa delle deboli interazioni tra filler e matrice, che compromettono le proprietà meccaniche. Questa tesi esplora l'uso della lignina come filler rinnovabile per la sostituzione del CB, evidenziando vantaggi e sfide legate alla sua integrazione nei compositi elastomerici. Per superare queste limitazioni, sono state esplorate modifiche fisiche e chimiche per migliorare la compatibilità della lignina con la gomma naturale. Le modifiche fisiche si sono concentrate sulla creazione di nanoparticelle di lignina (LNP) e sulla loro dispersione nella matrice elastomerica, ottimizzandone dimensione e morfologia. LNP sferiche sono state preparate tramite precipitazione anti-solvente e integrate nei composti di gomma tramite miscelazione a secco o pre-dispersione nel lattice di gomma naturale, con quest'ultimo metodo che ha mostrato una dispersione superiore. Sebbene le sole LNP non abbiano eguagliato le capacità di rinforzo del CB, sistemi ibridi che combinano LNP e CB hanno dimostrato di essere una soluzione promettente. Particelle di LNP più piccole, con una maggiore superficie, hanno migliorato il rinforzo, ma la natura termoplasticità della lignina ha costituito una sfida a causa della minore durezza delle particelle. Parallelamente, sono state esplorate modifiche chimiche per migliorare l'adesione tra filler e matrice mediante la funzionalizzazione della superficie della lignina. La glicidilazione della lignina è stata studiata, e un metodo meccanochimico, più ecologico, è stato sviluppato per ridurre scarti e l’uso di reagenti dannosi, in linea con gli obiettivi di sostenibilità del progetto. La lignina è stata derivatizzata completamente facendo reagire i gruppi fenolici e carbossilici con epicloridrina. Con il frazionamento della lignina, una frazione a basso peso molecolare ha consentito ti ottenere un prodotto modificato caratterizzato da piccole molecole con un altro contenuto epossidico, ideale come agente di crosslink per lignina. Successivamente sono state sviluppate LNP core-shell, con un nucleo di lignina rivestito da una shell di molecole glicidilate, utilizzando una quantità di reagenti significativamente inferiore rispetto ai metodi tradizionali. La reticolazione della lignina modificata, sulla superficie di queste particelle core-shell ha migliorato stabilità e struttura, rendendo le particelle più rigide e adatte al rinforzo della gomma. I test effettuati su queste LNP avanzate nei compositi di gomma hanno mostrato miglioramenti nelle proprietà meccaniche, in particolare nella resistenza alla trazione e in condizioni dinamiche, con ridotto accumulo di calore e minore isteresi, consentendo una sostituzione significativa del CB senza compromettere le proprietà meccaniche. Ulteriori funzionalizzazioni, come l'aggiunta di compatibilizzanti superficiali o crosslinker bio-based, sono state studiate e mostrano un potenziale per miglioramenti ancora più significativi delle proprietà meccaniche, evidenziando il potenziale della lignina come filler sostenibile e ad alte prestazioni per l'industria degli pneumatici.

(2025). New functional materials derived from biomasses tailored to sustainable rubber compounds. (Tesi di dottorato, , 2025).

New functional materials derived from biomasses tailored to sustainable rubber compounds

CARNEVALE, MATTIA
2025

Abstract

The increasing demand for sustainability in the tire industry has intensified the search for renewable alternatives to fossil-based materials, with a particular focus on reinforcing fillers. Traditionally, carbon black (CB) has been widely used due to its reinforcing properties, but its production contributes significantly to environmental issues, such as emissions and the use of fossil-based materials. To mitigate these issues, the use of bio-based materials as reinforcing fillers has gathered increasing attention in recent years. Lignin is an abundant, cheap, and bio-based material, but its application in rubber composites has been limited by poor filler-matrix interactions, leading to degraded mechanical properties. This study explores the use of bio-based lignin as a renewable filler to replace carbon black, highlighting both the advantages and challenges associated with its integration into rubber compounds. To overcome its limitations, both physical and chemical modifications of lignin were investigated, aiming to enhance its compatibility with natural rubber. The physical modifications focused on the preparation of lignin nanoparticles (LNPs) and their dispersion in the rubber matrix by optimizing particle size and morphology. Spherical LNPs were prepared via anti-solvent precipitation and were incorporated into rubber compounds through either dry-mixing or pre-dispersion in natural rubber latex, with the latter showing better dispersion in the rubber matrix. While LNPs alone did not match the reinforcing capabilities of CB, hybrid systems combining LNPs and CB offered a viable solution. Smaller LNPs with larger surface areas provided better reinforcement, but the thermoplastic nature of lignin, remained a challenge due to the softer particles. In parallel, chemical modifications aimed to improve filler-matrix adhesion by functionalizing the lignin surface. Glycidylation of lignin was studied and a greener mechanochemical method was developed. This method minimized waste and reduced the use of harmful reactants, aligning with the project’s sustainability goals. By reacting phenolic and carboxylic groups of lignin with epichlorohydrin, complete derivatization was achieved. Fractionation of lignin was also explored, allowing to produce modified lignin molecules with small molecular weight and high oxirane content, ideal for creating lignin-based crosslinkers. Core-shell LNPs were then developed, where a core of lignin was coated with a shell of smaller molecules that were previously glycidylated. This process allowed to use significantly fewer reactants than traditional methods used for the preparation of surface functionalized LNPs. The curing of epoxides on the surface of these core-shell particles improved their stability and structure, resulting in stiffer particles better suited for reinforcing rubber. Testing these advanced LNPs in rubber composites revealed improved mechanical properties, particularly in tensile strength and dynamic performance, with reduced heat build-up and lower hysteresis, enabling significant CB substitution without sacrificing mechanical properties. Further functionalization, such as incorporating surface compatibilizers or bio-based crosslinkers, was also explored and holds promise for even greater improvements in mechanical properties, reinforcing the potential of lignin as a sustainable, high-performance filler for the tire industry.
ZOIA, LUCA
lignina; nanocompositi; gomma naturale; meccanochimica; filler sostenibile
lignin nanoparticles; rubber compounds; kraft lignin; mechanochemistry; bio-based filler
Settore CHEM-05/A - Chimica organica
English
31-gen-2025
37
2023/2024
embargoed_20280131
(2025). New functional materials derived from biomasses tailored to sustainable rubber compounds. (Tesi di dottorato, , 2025).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_812274.pdf

embargo fino al 31/01/2028

Descrizione: Tesi di Carnevale Mattia - 812274
Tipologia di allegato: Doctoral thesis
Dimensione 5.59 MB
Formato Adobe PDF
5.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/541983
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact