The search for alternative fuels has gained much attention because of the rapid depletion of fossil fuels, their rising prices and environmental concerns. Biodiesel, monoalkyl esters of vegetable oils or animal fats, is a potential substitute for petroleum-based diesel. It exhibits several advantages over diesel fuel such as low toxicity, high biodegradability, lower emission of particulate matter and its derivation from renewable energy sources. The process commonly used to produce commercial biodiesel is the chemical alkaline catalysis to convert vegetable oils or fats and methanol (MeOH) to fatty acid methyl esters (FAME). However, this process is energy consuming and produces high amount of alkaline waste water. This motivates the current interest toward biocatalysis. Among enzymes, lipases convert vegetable oils to FAME in highly selective reactions carried out in mild, environmentally-favorable conditions. Different lipases have been described suitable for biodiesel production. The enzymatic approaches have become more and more attractive but their industrial exploitation is impaired by relatively high costs, partly due to the short operational life of catalysts. A major cause of low lipases performance is the inhibition by methanol. Although many scientific publications proved that the activity of several free and immobilized lipases is severely affected by methanol, none of them addresses the causes of inactivation. These investigations focused on how to override the inhibition rather than to explain why inhibition occurs. In the present work we investigated the molecular and kinetic effects of methanol on lipases already used or potentially applicable/interesting for the industrial production of biodiesel. Firstly, we set up a novel method based on analytical Fourier Transform Infrared Spectroscopy (FTIR) to detect and quantify the total methyl esters and fatty acids present in complex mixtures. The FTIR approach allows to monitor simultaneously transesterification and hydrolysis reactions catalyzed by lipase enzymes and exhibits several advantages over the traditional analytical methods: rapid, inexpensive, accurate, requiring very limited sample preparation and simple statistical analysis of the spectroscopic data. This method was validated through the comparison with data obtained by gas chromatography, a conventional technique commonly employed for the determination of methyl esters. Our FTIR method is based on the determination of the intensity of two different peaks, proportional to the total methyl ester and oleic acid amounts present in the mixture (Paper I). The study of the inactivation effects exerted by methanol was carried out on two different lipases, the Burkholderia glumae lipase (BGL) and the Candida antartica lipase B (CALB), in two different reaction systems. First of all we investigated the influence of methanol on the catalytic activity and conformation of BGL, a lipase known in literature to be tolerant to methanol. To this aim, 24-hours transesterification reactions of triolein and methanol, at 37°C and different oil:MeOH molar ratios, ranging from 1:1 up to 1:6, were carried out. MeOH is thus present from lower to higher amounts than required by the reaction stoichiometry (1:3). We found that the highest catalytic activity is reached in the presence of ~70% v/v MeOH, corresponding to a molar ratio 1:5, while for higher molar ratios the yield decreases dramatically. On the other hand, hydrolysis is proportional to the water content. In parallel, a structural study of the impact of MeOH on BGL structure and conformation was performed by means of mass spectrometry (MS), circular dichroism (CD), and intrinsic fluorescence spectroscopy. Under the conditions providing the highest reaction yield, we found that the enzyme stability is perturbed, leading to gradual protein unfolding and finally to aggregation (Paper II). Morevorer, we investigated the effect of methanol and water activity on CALB, one of the most commonly employed lipases for the industrial production of biodiesel, mainly in its immobilized form (Novozym 435). We obtained a model of the molecular mechanism of CALB deactivation exerted by methanol. Experimental data from the enzymatic alcoholysis reaction of vinyl acetate (VA) by methanol in the presence of toluene were fitted to a kinetic model. Reactions at constant VA (15.2% v/v), methanol concentrations ranging from 0.7% up to 60% v/v and at three different water activity values (0.02, 0.05, 0.09) were performed. CALB shows the highest activity at MeOH concentrations as low as 0.7% followed by a sharp decrease at higher concentrations. For MeOH concentrations higher than 10% the activity was constant. Water activity does not influence the decrease of lipase activity induced by MeOH. Experimental results were adapted to a kinetic model and combined to molecular dynamics simulations of CALB in toluene–methanol–water mixtures. Thus, a thermodynamic model of the lipase activity was established, which indicates that methanol acts as a competitive inhibitor of the enzyme (Paper III).

A causa del rapido esaurimento dei combustibili fossili, dell’aumento dei prezzi e dei problemi ambientali connessi al loro utilizzo, la ricerca di combustibili alternativi sta attirando un crescente interesse. Il biodiesel, una miscela di monoalchil esteri di oli vegetali o grassi animali, è un potenziale sostituto del gasolio ottenuto da petrolio. Esso, infatti, presenta diversi vantaggi rispetto al convenzionale combustibile diesel: bassa tossicità, alta biodegradabilità, minore emissione di particolato atmosferico, ottenimento da fonti di energia rinnovabili. La reazione di produzione del biodiesel è una transesterificazione di trigliceridi di origine vegetale o animale con alcoli a catena corta (metanolo o etanolo) e il processo comunemente impiegato è la catalisi chimica in condizioni alcaline. Questo processo, però, prevede un alto consumo energetico e produce una notevole quantità di acque di scarico alcaline che devono essere opportunamente trattate. Tali problematiche hanno spostato l’interesse verso la biocatalisi, che prevedere l’utilizzo di enzimi come catalizzatori di reazioni altamente selettive e condotte in condizioni blande e poco inquinanti. Le lipasi sono gli enzimi più adatti a catalizzare la transesterificazione di oli vegetali in esteri monoalchilici di acidi grassi a lunga catena. La stechiometria della reazione prevede l’utilizzo di metanolo (MeOH) in rapporto molare 3:1 rispetto all’olio. Il MeOH, però, è spesso causa dell’inattivazione del biocatalizzatore per motivi che non sono ancora compresi a fondo. In questo lavoro sono stati studiati gli effetti prodotti dal metanolo su lipasi già impiegate o potenzialmente utilizzabili/di interesse per la produzione industriale di biodiesel. Preliminarmente, è stato messo a punto e validato un nuovo metodo analitico di Spettroscopia a Infrarossi in Trasformata di Fourier (FTIR) per rilevare e quantificare la presenza di metil esteri ed acidi grassi in miscele di reazione complesse. Questo metodo, più semplice e rapido della più comune tecnica di gas cromatografia (GC), è stato applicato per monitorare reazioni enzimatiche di transesterificazione e idrolisi in cui metil esteri ed acidi grassi sono prodotti/substrati di reazione. Il metodo si basa sulla rilevazione del picco a 1435 cm-1 in derivata seconda dello spettro FTIR, la cui intensità è direttamente proporzionale alla quantità di metil esteri. Al contempo è possibile monitorare l’idrolisi dei trigliceridi misurando l’assorbimento a 1709 cm -1, lunghezza d’onda al quale assorbe l’acido oleico (Paper I). L’indagine sugli effetti di inattivazione causati dal metanolo è stata realizzata su due diverse lipasi, da Burkholderia glumae (BGL) e Candida antartica (CALB), in due diversi sistemi di reazione. Innanzitutto, è stata studiata l’influenza del metanolo sulla attività catalitica e sulla conformazione di BGL, enzima noto per essere tollerante al metanolo. Sono state allestite miscele di reazione a diversi rapporti molari trioleina:MeOH (da 1:1 a 1:6), in cui MeOH è presente in quantità sia maggiore che inferiore rispetto alla stechiometria 1:3 richiesta dalla reazione. Il massimo di attività catalitica è stato rilevato in presenza di ~70% di metanolo, corrispondente ad un rapporto molare trioleina:MeOH 1:5, mentre per rapporti molari superiori la resa cala drasticamente. L’idrolisi, invece, è risultata proporzionale al contenuto di acqua presente nella miscela di reazione. Parallelamente, è stata condotta una indagine sull’impatto del metanolo su struttura e conformazione dell’enzima. In particolare, è stata analizzata la struttura secondaria e terziaria di BGL in presenza di concentrazioni variabili di alcool utilizzando le tecniche di spettrometria di massa, spettroscopia di dicroismo circolare e fluorescenza intrinseca. Nel saggio di transesterificazione, nelle condizioni in cui BGL esprime il massimo di attività catalitica, ovvero in presenza del 50-70% di alcool in fase acquosa, il MeOH stesso influenza la stabilità dell’enzima provocandone una graduale denaturazione e successiva aggregazione (Paper II). Infine, è stato razionalizzato l’effetto del metanolo e il ruolo dell’attività dell’acqua sulla attività catalitica di CALB. Questo enzima è uno dei più impiegati nella produzione industriale di biodiesel, principalmente nella forma immobilizzata (Novozyme 435). E’ stato proposto un meccanismo molecolare dell’inattivazione da metanolo applicando i dati sperimentali ad un modello cinetico ed effettuando simulazioni di dinamica molecolare. Le condizioni sperimentali più adeguate a quelle simulate con metodi computazionali corrispondono ad una reazione di metanolisi di vinilacetato (VA) che produce metilacetato e vinil alcool. Le reazioni sono state realizzate a VA costante, con un range di concentrazione di MeOH da 0.7% a 60% v/v, a tre diversi valori di attività dell’acqua (aw): 0.02, 0.05 e 0.09. Per ciascuna aw saggiata, la velocità iniziale di CALB è massima alla più bassa concentrazione di MeOH impiegata, diminuisce drasticamente all’aumentare del MeOH, e si mantiene costante a concentrazioni di alcool superiori al 10%. E’ emerso, invece, che l’attività dell’acqua non ha effetto sulla diminuzione di attività catalitica indotta da MeOH. Questi risultati sperimentali sono stati adattati ad un modello cinetico e combinati alle simulazioni di CALB in miscele ternarie toluene/MeOH/VA. Ne è stato ottenuto un modello termodinamico del comportamento di CALB da cui emerge che il MeOH agisce sull’enzima come un inibitore competitivo (Paper III).

(2014). Effects of methanol on the activity and structure of lipase enzymes. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014).

Effects of methanol on the activity and structure of lipase enzymes

SASSO, FRANCESCO
2014

Abstract

The search for alternative fuels has gained much attention because of the rapid depletion of fossil fuels, their rising prices and environmental concerns. Biodiesel, monoalkyl esters of vegetable oils or animal fats, is a potential substitute for petroleum-based diesel. It exhibits several advantages over diesel fuel such as low toxicity, high biodegradability, lower emission of particulate matter and its derivation from renewable energy sources. The process commonly used to produce commercial biodiesel is the chemical alkaline catalysis to convert vegetable oils or fats and methanol (MeOH) to fatty acid methyl esters (FAME). However, this process is energy consuming and produces high amount of alkaline waste water. This motivates the current interest toward biocatalysis. Among enzymes, lipases convert vegetable oils to FAME in highly selective reactions carried out in mild, environmentally-favorable conditions. Different lipases have been described suitable for biodiesel production. The enzymatic approaches have become more and more attractive but their industrial exploitation is impaired by relatively high costs, partly due to the short operational life of catalysts. A major cause of low lipases performance is the inhibition by methanol. Although many scientific publications proved that the activity of several free and immobilized lipases is severely affected by methanol, none of them addresses the causes of inactivation. These investigations focused on how to override the inhibition rather than to explain why inhibition occurs. In the present work we investigated the molecular and kinetic effects of methanol on lipases already used or potentially applicable/interesting for the industrial production of biodiesel. Firstly, we set up a novel method based on analytical Fourier Transform Infrared Spectroscopy (FTIR) to detect and quantify the total methyl esters and fatty acids present in complex mixtures. The FTIR approach allows to monitor simultaneously transesterification and hydrolysis reactions catalyzed by lipase enzymes and exhibits several advantages over the traditional analytical methods: rapid, inexpensive, accurate, requiring very limited sample preparation and simple statistical analysis of the spectroscopic data. This method was validated through the comparison with data obtained by gas chromatography, a conventional technique commonly employed for the determination of methyl esters. Our FTIR method is based on the determination of the intensity of two different peaks, proportional to the total methyl ester and oleic acid amounts present in the mixture (Paper I). The study of the inactivation effects exerted by methanol was carried out on two different lipases, the Burkholderia glumae lipase (BGL) and the Candida antartica lipase B (CALB), in two different reaction systems. First of all we investigated the influence of methanol on the catalytic activity and conformation of BGL, a lipase known in literature to be tolerant to methanol. To this aim, 24-hours transesterification reactions of triolein and methanol, at 37°C and different oil:MeOH molar ratios, ranging from 1:1 up to 1:6, were carried out. MeOH is thus present from lower to higher amounts than required by the reaction stoichiometry (1:3). We found that the highest catalytic activity is reached in the presence of ~70% v/v MeOH, corresponding to a molar ratio 1:5, while for higher molar ratios the yield decreases dramatically. On the other hand, hydrolysis is proportional to the water content. In parallel, a structural study of the impact of MeOH on BGL structure and conformation was performed by means of mass spectrometry (MS), circular dichroism (CD), and intrinsic fluorescence spectroscopy. Under the conditions providing the highest reaction yield, we found that the enzyme stability is perturbed, leading to gradual protein unfolding and finally to aggregation (Paper II). Morevorer, we investigated the effect of methanol and water activity on CALB, one of the most commonly employed lipases for the industrial production of biodiesel, mainly in its immobilized form (Novozym 435). We obtained a model of the molecular mechanism of CALB deactivation exerted by methanol. Experimental data from the enzymatic alcoholysis reaction of vinyl acetate (VA) by methanol in the presence of toluene were fitted to a kinetic model. Reactions at constant VA (15.2% v/v), methanol concentrations ranging from 0.7% up to 60% v/v and at three different water activity values (0.02, 0.05, 0.09) were performed. CALB shows the highest activity at MeOH concentrations as low as 0.7% followed by a sharp decrease at higher concentrations. For MeOH concentrations higher than 10% the activity was constant. Water activity does not influence the decrease of lipase activity induced by MeOH. Experimental results were adapted to a kinetic model and combined to molecular dynamics simulations of CALB in toluene–methanol–water mixtures. Thus, a thermodynamic model of the lipase activity was established, which indicates that methanol acts as a competitive inhibitor of the enzyme (Paper III).
LOTTI, MARINA
Methanol; Lipases; Biodiesel; Enzymatic transesterification; Enzyme immobilization, structural analysis and biochemical characterization of lipases
BIO/10 - BIOCHIMICA
English
6-feb-2014
Scuola di dottorato di Scienze
BIOTECNOLOGIE INDUSTRIALI - 15R
26
2012/2013
open
(2014). Effects of methanol on the activity and structure of lipase enzymes. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014).
File in questo prodotto:
File Dimensione Formato  
Phd_unimib_715944 .pdf

Accesso Aperto

Tipologia di allegato: Doctoral thesis
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/50417
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact