We study the problem of false vacuum decay in arbitrary dimensions, in the presence of gravity, and compute the transition probability within the thin-wall approximation, generalising the results of Coleman and de Luccia. In the particular case of one compact dimension, we present explicit formulae for the Euclidean Bounce configuration that drives the transition from a de Sitter to Minkowski or from a Minkowski to anti-de Sitter vacua.
Antoniadis, I., Bielli, D., Chatrabhuti, A., Isono, H. (2024). Thin-wall vacuum decay in the presence of a compact dimension [Working paper].
Thin-wall vacuum decay in the presence of a compact dimension
Daniele Bielli;
2024
Abstract
We study the problem of false vacuum decay in arbitrary dimensions, in the presence of gravity, and compute the transition probability within the thin-wall approximation, generalising the results of Coleman and de Luccia. In the particular case of one compact dimension, we present explicit formulae for the Euclidean Bounce configuration that drives the transition from a de Sitter to Minkowski or from a Minkowski to anti-de Sitter vacua.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Antoniadis-2024-arXiv-preprint.pdf
accesso aperto
Descrizione: Thin-wall vacuum decay in the presence of a compact dimension
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
956.53 kB
Formato
Adobe PDF
|
956.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.