We study the problem of false vacuum decay in arbitrary dimensions, in the presence of gravity, and compute the transition probability within the thin-wall approximation, generalising the results of Coleman and de Luccia. In the particular case of one compact dimension, we present explicit formulae for the Euclidean Bounce configuration that drives the transition from a de Sitter to Minkowski or from a Minkowski to anti-de Sitter vacua.

Antoniadis, I., Bielli, D., Chatrabhuti, A., Isono, H. (2024). Thin-wall vacuum decay in the presence of a compact dimension [Working paper].

Thin-wall vacuum decay in the presence of a compact dimension

Daniele Bielli;
2024

Abstract

We study the problem of false vacuum decay in arbitrary dimensions, in the presence of gravity, and compute the transition probability within the thin-wall approximation, generalising the results of Coleman and de Luccia. In the particular case of one compact dimension, we present explicit formulae for the Euclidean Bounce configuration that drives the transition from a de Sitter to Minkowski or from a Minkowski to anti-de Sitter vacua.
Working paper
High Energy Physics - Theory; High Energy Physics - Theory; General Relativity and Quantum Cosmology; High Energy Physics - Phenomenology
English
2024
http://arxiv.org/abs/2405.16920v1
Antoniadis, I., Bielli, D., Chatrabhuti, A., Isono, H. (2024). Thin-wall vacuum decay in the presence of a compact dimension [Working paper].
open
File in questo prodotto:
File Dimensione Formato  
Antoniadis-2024-arXiv-preprint.pdf

accesso aperto

Descrizione: Thin-wall vacuum decay in the presence of a compact dimension
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 956.53 kB
Formato Adobe PDF
956.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/488621
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact