This thesis presents some recently published results regarding two classical models of fluid dynamics: the 1D shallow water equations (SWE) and the 3D incompressible semigeostrophic equations.

This thesis presents some recently published results regarding two classical models of fluid dynamics: the 1D shallow water equations (SWE) and the 3D incompressible semigeostrophic equations.

(2024). Singularities in fluid dynamics: from the classical approach to Monge-Ampère geometry. (Tesi di dottorato, , 2024).

Singularities in fluid dynamics: from the classical approach to Monge-Ampère geometry

D'ONOFRIO, ROBERTO
2024

Abstract

This thesis presents some recently published results regarding two classical models of fluid dynamics: the 1D shallow water equations (SWE) and the 3D incompressible semigeostrophic equations.
WEIGEL, THOMAS STEFAN
ORTENZI, GIOVANNI
Geometry; Fluid dynamics; Monge-Ampere; Meteorology; Oceanography
Geometry; Fluid dynamics; Monge-Ampere; Meteorology; Oceanography
MAT/07 - FISICA MATEMATICA
Italian
24-mag-2024
36
2022/2023
open
(2024). Singularities in fluid dynamics: from the classical approach to Monge-Ampère geometry. (Tesi di dottorato, , 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_870251.pdf

accesso aperto

Descrizione: Singularities in fluid dynamics: from the classical approach to Monge-Ampère geometry
Tipologia di allegato: Doctoral thesis
Dimensione 5.6 MB
Formato Adobe PDF
5.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/479159
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact