We describe a grading switching for arbitrary non-associative algebras of prime characteristic p, aimed at producing a new grading of an algebra from a given one. This is inspired by a fundamental tool in the classification theory of modular Lie algebras known as toral switching, which relies on a delicate adaptation of the exponential of a derivation. We trace the development of grading switching, from an early version based on taking the Artin-Hasse exponential of a nilpotent derivation, to a more general version which uses certain generalized Laguerre polynomials playing the role of generalized exponentials. Both versions depend on the existence of appropriate analogues of the functional equation exp(x).exp(y)=exp(x+y) for the classical exponential.
Avitabile, M., Mattarei, S. (2013). Grading switching for modular non-associative algebras [Working paper].
Grading switching for modular non-associative algebras
AVITABILE, MARINA;Mattarei, S.
2013
Abstract
We describe a grading switching for arbitrary non-associative algebras of prime characteristic p, aimed at producing a new grading of an algebra from a given one. This is inspired by a fundamental tool in the classification theory of modular Lie algebras known as toral switching, which relies on a delicate adaptation of the exponential of a derivation. We trace the development of grading switching, from an early version based on taking the Artin-Hasse exponential of a nilpotent derivation, to a more general version which uses certain generalized Laguerre polynomials playing the role of generalized exponentials. Both versions depend on the existence of appropriate analogues of the functional equation exp(x).exp(y)=exp(x+y) for the classical exponential.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.