Alzheimer’s disease (AD) is a neurodegenerative disease that accounts for 60-80% of all dementia cases. The more the life expectancy increases, the more the incidence and prevalence are destined to rise since elderly population is the most affected one. AD is characterized by many pathological hallmarks: β-amyloid (Aβ) plaques, tau neurofibrillary tangles, synaptic dysfunction, and microglia dystrophy. The last two hallmarks are present early in the pathology and correlate with symptoms and disease progression. How synaptic dysfunction starts and propagates in the brain and is linked to microglial dystrophy is still largely unknown. Extracellular vesicles (EVs) have attracted particular interest in the last years as potential contributors. EVs represent an important mechanism of cell-to-cell communication in the brain. They are lipid-encased nanoparticles that convey bioactive signals from a donor to specific target cells, influencing their functions. EVs become vehicle of the misfolded proteins that accumulate in AD, including Aβ and tau, but can even take part into many physiological and pathological processes. Our previous work demonstrated that large (> 200 nm) microglial EVs carrying Aβ (Aβ-EVs) can propagate synaptic dysfunction in the mouse brain by moving at the axon surface. Specifically we showed that Aβ-EVs are more prone to motility and move faster along axons compared to control EVs, released from microglia not exposed to Aβ (Ctrl-EVs). Here we investigated the effects of Tau on microglia and the interaction of large EVs derived from tau-treated microglia (Tau-EVs) and neurons. Mouse microglia in primary culture have been exposed to tau protein (200 nM o/n) and EVs, released upon ATP stimulation (1 mM – 30 min), have been isolated by differential centrifugation. The Tunable Resistive Pulse Sensing technique analysis of large Tau-EVs highlighted that tau treatment didn’t affect neither their production nor the size distribution of EVs. Optical tweezers coupled with time-lapse imaging experiments showed that Tau-EVs adhesion and motility weren’t affected by tau exposure and that Tau-EVs displayed equal motion along the surface of axons compared to Ctrl-EVs. Calcium imaging experiments highlighted a neurotoxic effect of Tau-EVs, since they were able to increase basal calcium levels in primary hippocampal neurons (HN). Moreover, we found that Tau-EVs have the capacity of impair in vitro synaptic plasticity induced by a chemical protocol. In fact, the increase of PSD-95/vGlut1 colocalizing area elicited in vehicle-treated HN or HN exposed to Ctrl-EVs was prevented in HN exposed to Tau-EVs. This evidence was confirmed in vivo in the mouse brain where we found that LTP was impaired at the site of Tau-EVs injection in the entorhinal cortex (EC) and in its main target region, the dentate gyrus (DG) of the hippocampus, 24 h later. The effectors of LTP impairment and its propagation along the entorhinal-hippocampal circuit could be either tau protein itself, or other detrimental cargoes, which are sorted in EVs by tau-treated microglia and may reflect their phenotypical change. Tau was present in large EVs at very low concentration and probably inside the lumen. Therefore, even phenotype changes of microglia were studied to clarify if detrimental cargoes were possibly sorted in EVs. Tau was able to modify phenotype and function of microglia, reducing the proliferation rate, increasing SA-β-gal activity, a marker of senescence, reducing the expression of the activation marker CD11c and Clec7a and increasing the phagocytic capacity of the cells. All these data taken together indicate that microglia in response to tau can promote the onset and propagation of synaptic dysfunction via release of large EVs. This work increases our understanding of the mechanisms underlying synaptic deficit onset and progression in AD, and bring us closer to the identification of new therapeutic target to treat AD.
La patologia di Alzheimer (AD) è una malattia neurodegenerative responsabile del 60-80% dei casi di demenza. La popolazione anziana risulta la più colpita e, con l’aumento dell’aspettativa di vita, incidenza e prevalenza dell’AD sono destinate ad aumentare. L’AD è caratterizzata da: placche di β-amiloide extracellulari, grovigli neurofibrillari di proteina tau, disfunzioni sinaptiche e microglia distrofica. Questi ultimi due segni sono presenti molto presto nel decorso della malattia e correlano sia con lo sviluppo dei sintomi che con la progressione della patologia stessa. Come le disfunzioni sinaptiche abbiano luogo in prima istanza, si diffondano e siano correlate alle disfunzioni microgliali sono meccanismi ancora sconosciuti. Le vescicole extracellulari (EVs) hanno attirato particolarmente l’attenzione come possibili contribuenti. Le EVs rappresentano un importante meccanismo di comunicazione intracellulare. Sono nanoparticelle rivestite di lipidi che trasmettono segnali bioattivi, influenzando le funzioni di cellule bersaglio. Possono diventare veicolo di proteine misfoldate (Aβ e tau). Recentemente abbiamo dimostrato come EVs microgliali di grandi dimensioni (> 200 nm) che trasportano Aβ (AβEV) possono propagare disfunzione sinaptica muovendosi lungo la superficie neuronale. Le AβEVs hanno una maggior propensione al movimento assonale e risultano avere una velocità maggiore rispetto alle EVs rilasciate da microglia non esposta ad Aβ (CtrlEVs). In questo studio abbiamo indagato gli effetti di tau sulla microglia e l'interazione di EVs derivate da microglia trattata con tau (TauEV) e neuroni. Colture primarie murine di microglia sono state esposte a tau (200nM o/n) e le EVs sono state isolate mediante centrifugazione differenziale dopo stimolazione con ATP. L'analisi Tunable Resistive Pulse Sensing ha evidenziato che tau non influenza né produzione né distribuzione dimensionale delle EVs. Gli esperimenti di manipolazione ottica associati a imaging in time-lapse hanno evidenziato un’uguale propensione delle TauEVs ad adesione e movimento, le cui caratteristiche non differivano da quelle delle CtrlEVs. La quantificazione del calcio libero intracellulare ha indicato un effetto neurotossico delle TauEVs, poiché erano in grado di aumentare i livelli basali di calcio nei neuroni ippocampali (HN). Inoltre, le TauEVs sono in grado di compromettere la plasticità sinaptica in vitro indotta da un protocollo chimico. Infatti, l'aumento dell'area di colocalizzazione PSD-95/vGlut1 provocato dall’induzione chimica di LTP nei HN non trattati o esposti a CtrlEVs è stato prevenuto nei HN esposti a TauEVs. Questa evidenza è stata confermata in vivo nel cervello di topo dove le TauEVs hanno compromesso l'LTP nella corteccia entorinale dopo iniezione e nella sua principale regione bersaglio, il giro dentato dell'ippocampo, 24h più tardi. La compromissione dell'LTP in loco e la successiva propagazione della disfunzione potrebbero essere causati sia da tau che da altri carichi vescicolari dannosi. Tau è presente nelle TauEVs a concentrazione molto bassa e probabilmente incapsulata all'interno del lume. Pertanto, è stato parallelamente indagato come tau potesse modificare il fenotipo microgliale. Tau ha provocato una modifica di fenotipo e funzione microgliale, riducendo il tasso di proliferazione, aumentando l'attività di SA-β-gal, marcatore di senescenza, riducendo l'espressione dei marcatori di attivazione CD11c e Clec7a e aumentando la capacità fagocitaria delle cellule. Questi dati indicano che la microglia in risposta a tau può promuovere l'insorgenza e la propagazione della disfunzione sinaptica attraverso il rilascio di EVs di grandi dimensioni. Questo studio permetterà una maggiore comprensione dei meccanismi alla base dell'insorgenza e della progressione del deficit sinaptico nell'AD e potrà aiutare nell'identificazione di nuovi bersagli terapeutici per il trattamento dell'AD.
(2024). Investigating the role of large microglial extracellular vesicles in Alzheimer’s disease and their interaction with neurons. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Investigating the role of large microglial extracellular vesicles in Alzheimer’s disease and their interaction with neurons
BATTOCCHIO, ELISABETTA
2024
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that accounts for 60-80% of all dementia cases. The more the life expectancy increases, the more the incidence and prevalence are destined to rise since elderly population is the most affected one. AD is characterized by many pathological hallmarks: β-amyloid (Aβ) plaques, tau neurofibrillary tangles, synaptic dysfunction, and microglia dystrophy. The last two hallmarks are present early in the pathology and correlate with symptoms and disease progression. How synaptic dysfunction starts and propagates in the brain and is linked to microglial dystrophy is still largely unknown. Extracellular vesicles (EVs) have attracted particular interest in the last years as potential contributors. EVs represent an important mechanism of cell-to-cell communication in the brain. They are lipid-encased nanoparticles that convey bioactive signals from a donor to specific target cells, influencing their functions. EVs become vehicle of the misfolded proteins that accumulate in AD, including Aβ and tau, but can even take part into many physiological and pathological processes. Our previous work demonstrated that large (> 200 nm) microglial EVs carrying Aβ (Aβ-EVs) can propagate synaptic dysfunction in the mouse brain by moving at the axon surface. Specifically we showed that Aβ-EVs are more prone to motility and move faster along axons compared to control EVs, released from microglia not exposed to Aβ (Ctrl-EVs). Here we investigated the effects of Tau on microglia and the interaction of large EVs derived from tau-treated microglia (Tau-EVs) and neurons. Mouse microglia in primary culture have been exposed to tau protein (200 nM o/n) and EVs, released upon ATP stimulation (1 mM – 30 min), have been isolated by differential centrifugation. The Tunable Resistive Pulse Sensing technique analysis of large Tau-EVs highlighted that tau treatment didn’t affect neither their production nor the size distribution of EVs. Optical tweezers coupled with time-lapse imaging experiments showed that Tau-EVs adhesion and motility weren’t affected by tau exposure and that Tau-EVs displayed equal motion along the surface of axons compared to Ctrl-EVs. Calcium imaging experiments highlighted a neurotoxic effect of Tau-EVs, since they were able to increase basal calcium levels in primary hippocampal neurons (HN). Moreover, we found that Tau-EVs have the capacity of impair in vitro synaptic plasticity induced by a chemical protocol. In fact, the increase of PSD-95/vGlut1 colocalizing area elicited in vehicle-treated HN or HN exposed to Ctrl-EVs was prevented in HN exposed to Tau-EVs. This evidence was confirmed in vivo in the mouse brain where we found that LTP was impaired at the site of Tau-EVs injection in the entorhinal cortex (EC) and in its main target region, the dentate gyrus (DG) of the hippocampus, 24 h later. The effectors of LTP impairment and its propagation along the entorhinal-hippocampal circuit could be either tau protein itself, or other detrimental cargoes, which are sorted in EVs by tau-treated microglia and may reflect their phenotypical change. Tau was present in large EVs at very low concentration and probably inside the lumen. Therefore, even phenotype changes of microglia were studied to clarify if detrimental cargoes were possibly sorted in EVs. Tau was able to modify phenotype and function of microglia, reducing the proliferation rate, increasing SA-β-gal activity, a marker of senescence, reducing the expression of the activation marker CD11c and Clec7a and increasing the phagocytic capacity of the cells. All these data taken together indicate that microglia in response to tau can promote the onset and propagation of synaptic dysfunction via release of large EVs. This work increases our understanding of the mechanisms underlying synaptic deficit onset and progression in AD, and bring us closer to the identification of new therapeutic target to treat AD.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_870394.pdf
embargo fino al 05/02/2027
Descrizione: Investigating the role of large microglial extracellular vesicles in Alzheimer’s disease and their interaction with neurons
Tipologia di allegato:
Doctoral thesis
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.