In tyre tread compounds, two or more polymers are often blended with different additives to reach specific targets. However, potential improvements in the material performances are usually hindered by the polymers incompatibility which not only leads to phase-separated morphologies with poor interfacial adhesion, but also to inhomogeneities in the additives distribution, downgrading the properties of the material. Polymers mutual organization and the compound additives diffusion mechanisms are complex processes not only affected by the polymers chemistry and physical properties (e.g. the blend composition, the viscosity of the polymers at blending temperature and their affinity) but also by the manufacturing conditions (e.g. blending method, mixing time, temperature). In this context, extensive research efforts have been undertaken in the compatibilization of these systems with compatibilizing agents such as block or graft copolymers. Nevertheless, their effectiveness as well as their versatility seem to be limited. More recently, the compatibilization role of reinforcing fillers, already commonly employed in rubber manufacturing, was investigated by different researchers. Studies reported improvements in the refinement of polymer blends morphologies and, in some cases, the promotion and stabilization of thermodynamically unfavoured configurations. In this context, the present study analyses the effects of commonly employed reinforcing fillers on technologically relevant rubber blends and proposes alternative methods for the control of the filler effect. In detail, in the first part of this study, the selected styrene-butadiene rubber (SBR)/butadiene rubber (BR) blend system compatibility was analysed in relation to the single polymers characteristics, blend composition, blending method and crosslinking process. Starting from these reference systems, the blend microstructural evolutions in the presence of inorganic fillers were evaluated respect to the filler properties and the compounding processes, by combining thermal, thermomechanical and morphological analyses. In detail, since the internal system structure and properties are strictly related to the filler localization and the interactions established among the various constituents, the correlations between these aspects were investigated. In this context, the acquired knowledge of the system was further capitalized through the modification of the filler affinity with commercially available silanized SBR and BR oligomers. In these formulations, the filler localization and dispersion appear to be significantly modified, thus affecting the blend compatibility and the final material properties. The second part of this thesis is focused on the development of novel fillers able to selectively compatibilize rubber blends thanks to their surface chemistry features. In this context, spatially controlled functionalization approaches of silica nanoparticles (NPs) were investigated to produce the so-called Janus NPs. In detail, two synthetic masking approaches were taken in consideration and analysed to identify viable routes for the selective modification of silica NPs.
Nei formulati degli pneumatici, due o più polimeri sono comunemente miscelati con altri additivi per raggiungere dei target specifici. Tuttavia, il miglioramento delle performance del materiale è spesso ostacolato dall’incompatibilità dei polimeri che, non solo porta a morfologie a fasi separate con una bassa adesione interfacciale, ma anche a disomogeneità nella distribuzione degli additivi con un conseguente peggioramento delle proprietà del materiale. L’organizzazione morfologica dei polimeri e i meccanismi di diffusione degli additivi nel formulato sono dei processi complessi influenzati non solo dalla chimica dei polimeri e dalle loro proprietà fisiche (e.g. composizione della miscela, viscosità dei polimeri, affinità) ma anche dalle condizioni di produzione (e.g. metodo, tempo e temperatura di miscelazione). In questo contesto, nell’ambito della ricerca sono stati intrapresi considerevoli sforzi per lo studio della compatibilizzazione di questi sistemi con agenti compatibilizzanti, come i copolimeri a blocchi o ad innesto. Tuttavia, la loro efficacia e versatilità sembra limitata. Più recentemente, l’effetto compatibilizzante di filler rinforzanti, già comunemente utilizzati nella preparazione di materiali in gomma, è stato investigato da diversi ricercatori. Studi hanno riscontrato miglioramenti nella dispersione delle fasi polimeriche e, in alcuni casi, la promozione e la stabilizzazione di morfologie termodinamicamente sfavorite. In questo contesto, il presente studio analizza l’effetto di filler rinforzanti, comunemente utilizzati in miscele elastomeriche tecnologicamente rilevanti e propone metodi alternativi per il controllo di tale effetto. In dettaglio, nella prima parte di questo studio, la compatibilità della miscela di gomma stirene-butadiene (SBR)/ gomma butadiene (BR) è stata analizzata in relazione alle caratteristiche dei singoli polimeri, alla composizione della miscela, al metodo di miscelazione e al processo di reticolazione. A partire da questi sistemi di riferimento, le evoluzioni microstrutturali della miscela in presenza di filler inorganici sono state valutate in relazione alle proprietà del filler e ai processi di compounding, combinando analisi termiche, termomeccaniche e morfologiche. Nello specifico, dato che la struttura interna e le proprietà del sistema sono strettamente correlate alla localizzazione del filler e alle interazioni stabilite tra i vari costituenti, sono state investigate le correlazioni tra questi aspetti. In questo contesto, le conoscenze acquisite sul sistema sono state ulteriormente capitalizzate attraverso la modifica dell’affinità del filler mediante oligomeri di SBR e BR silanizzati. In queste formulazioni, la localizzazione e dispersione del filler appare significativamente modificata, influenzando la compatibilità della miscela e le proprietà finali del materiale. La seconda parte di questa tesi è focalizzata sullo sviluppo di filler innovativi in grado di compatibilizzare in maniera selettiva le miscele elastomeriche grazie alle loro caratteristiche chimiche superficiali. In questo contesto, sono stati investigati degli approcci di funzionalizzazione spazialmente controllata di nanoparticelle (NP) di silice per produrre le così chiamate Janus NP. Nello specifico, sono stati presi in considerazione e analizzati due approcci sintetici di mascheramento per identificare delle possibili vie per la modifica selettiva di NP di silice.
(2024). Study of nanoparticles effect on multiphase rubber systems. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Study of nanoparticles effect on multiphase rubber systems
MANZINI, ELISA
2024
Abstract
In tyre tread compounds, two or more polymers are often blended with different additives to reach specific targets. However, potential improvements in the material performances are usually hindered by the polymers incompatibility which not only leads to phase-separated morphologies with poor interfacial adhesion, but also to inhomogeneities in the additives distribution, downgrading the properties of the material. Polymers mutual organization and the compound additives diffusion mechanisms are complex processes not only affected by the polymers chemistry and physical properties (e.g. the blend composition, the viscosity of the polymers at blending temperature and their affinity) but also by the manufacturing conditions (e.g. blending method, mixing time, temperature). In this context, extensive research efforts have been undertaken in the compatibilization of these systems with compatibilizing agents such as block or graft copolymers. Nevertheless, their effectiveness as well as their versatility seem to be limited. More recently, the compatibilization role of reinforcing fillers, already commonly employed in rubber manufacturing, was investigated by different researchers. Studies reported improvements in the refinement of polymer blends morphologies and, in some cases, the promotion and stabilization of thermodynamically unfavoured configurations. In this context, the present study analyses the effects of commonly employed reinforcing fillers on technologically relevant rubber blends and proposes alternative methods for the control of the filler effect. In detail, in the first part of this study, the selected styrene-butadiene rubber (SBR)/butadiene rubber (BR) blend system compatibility was analysed in relation to the single polymers characteristics, blend composition, blending method and crosslinking process. Starting from these reference systems, the blend microstructural evolutions in the presence of inorganic fillers were evaluated respect to the filler properties and the compounding processes, by combining thermal, thermomechanical and morphological analyses. In detail, since the internal system structure and properties are strictly related to the filler localization and the interactions established among the various constituents, the correlations between these aspects were investigated. In this context, the acquired knowledge of the system was further capitalized through the modification of the filler affinity with commercially available silanized SBR and BR oligomers. In these formulations, the filler localization and dispersion appear to be significantly modified, thus affecting the blend compatibility and the final material properties. The second part of this thesis is focused on the development of novel fillers able to selectively compatibilize rubber blends thanks to their surface chemistry features. In this context, spatially controlled functionalization approaches of silica nanoparticles (NPs) were investigated to produce the so-called Janus NPs. In detail, two synthetic masking approaches were taken in consideration and analysed to identify viable routes for the selective modification of silica NPs.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_806995.pdf
embargo fino al 06/02/2027
Descrizione: Tesi di Manzini Elisa - 806995
Tipologia di allegato:
Doctoral thesis
Dimensione
16.33 MB
Formato
Adobe PDF
|
16.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.