Genome instability stands as a prominent hallmark of cancer cells, often deriving from deficiencies in DNA repair processes. Among the different types of DNA damage, double-strand breaks (DSBs) emerge as hazardous lesions, known for their high cytotoxicity. To maintain genome stability and prevent cell death, it becomes fundamental that DSBs are recognizes and repaired accurately. In eukaryotic cells, the response to DSBs involves the activation of the DNA damage response (DDR), a comprehensive system of pathways dedicated to the repair of DNA breaks. The repair of DNA DSBs involves two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). In NHEJ pathway the broken DNA ends are directly ligated and in this mechanism are involved components like the Ku70-Ku80 heterodimer, which plays a critical role by binding to the damaged DNA. The HR process uses sister chromatids or homologous chromosomes as a template to repair the DNA break. HR is initiated by nucleolytic degradation (resection) of the 5’-terminated strands at both DSB ends. The Mre11-Rad50-Xrs2 (MRX) complex initiates resection of DNA DSBs via the Mre11 endonuclease activity and recruits Tel1/ATM kinase. The yeast Rif2 protein inhibits Mre11 endonuclease activity and Tel1/ATM activation through a short motif, called MIN, which is known to bind the Rad50 subunit and to stimulate its ATPase activity. In this thesis I contributed to clarify the mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA DSBs. By using AlphaFold Multimer modeling we pinpointed and validated the interaction surface between Rif2 MIN motif and Rad50. Furthermore, we engineered the rif2-S6E mutation that amplifies the inhibitory properties of Rif2 by increasing Rif2-Rad50 interaction. Rif2S6E diminishes the binding of Tel1 to DNA DSBs while leaving MRX association with DSBs unaffected. The reduced Tel1 association with DSBs in rif2-S6E cells results in impaired DSB end-tethering and together with the suppression of this defect by an hyperactivated variant of Tel1, suggest a direct role of Tel1 in maintaining the DSB ends closed to each other. Finally, Rif2S6E stimulates Rad50 ATPase and impairs Tel1-MRX interaction more efficiently than wild-type Rif2, indicating that Rif2-bound Rad50 is not competent for Tel1 binding. A crucial challenge within NHEJ pathway lies in ensuring that the ends of DSBs are kept in close proximity to facilitate their accurate and effective rejoining. This essential function of end-tethering requires the coordinated actions of both the MRX/MRN complex and the Sae2/CtIP protein. In the second part of the thesis, I investigated if the Ku complex could have a role in the control of the mechanism of end-tethering. The characterization of ku70-C85Y mutation, which increases Ku affinity for DNA, has allowed to show that the Ku complex promotes DSB end-tethering and the C85Y mutation enhances this bridging function by increasing Ku retention very close to the DSB ends. We also demonstrated that Tel1 antagonizes the Ku function in supporting end-tethering by promoting nucleosome removal and possibly Ku sliding inwards. As the presence of Ku at the DSB ends prevents the access of resection nucleases, the Tel1-mediated regulation of Ku association with the DSB ends provides an important layer of control in the choice between NHEJ and HR, suggesting a new function of Tel1 in the DNA damage response. Taken together, the findings reported in this thesis unveil a complex and dynamic modulation of DNA DSB repair and Tel1/ATM activation. Ku complex together with MRX complex and Sae2 contributes to the essential process of DSB end-tethering, while Rif2 regulatory function acts limiting MRX-mediated Tel1 activation. Understanding these regulatory mechanisms is crucial for gaining insights into the molecular events that safeguard genome stability and orchestrate the sophisticated response of DNA repair pathways.

L'instabilità del genoma rappresenta un importante segno distintivo delle cellule tumorali, spesso derivante da processi di riparazione del DNA non ottimali. Tra i diversi tipi di danni al DNA, le rotture a doppio filamento (DSBs) risultano essere le lesioni più citotossiche. Per mantenere la stabilità del genoma e prevenire la morte cellulare, diventa fondamentale che i DSBs vengano riconosciuti e riparati con precisione. La riparazione dei DSBs coinvolge due principali meccanismi: la ricombinazione omologa (HR) e il Non-Homologous End-Joining (NHEJ). Nel NHEJ, le estremità del DNA vengono direttamente legate e in questo meccanismo sono coinvolti l'eterodimero Ku70-Ku80. Il processo di HR utilizza cromatidi fratelli o cromosomi omologhi come modello per riparare la rottura del DNA. L'HR è avviato dalla degradazione nucleolitica (resezione) dei filamenti con terminazione 5' su entrambe le estremità del DSB. Il complesso Mre11-Rad50-Xrs2 (MRX) inizia la resezione dei DSBs attraverso l'attività di endonucleasi di Mre11, inoltre recluta la chinasi Tel1/ATM. La proteina Rif2 inibisce l'attività di endonucleasi di Mre11 e l'attivazione di Tel1/ATM attraverso una breve sequenza chiamata MIN, nota per legarsi alla subunità Rad50 e stimolare la sua attività ATPasica. In questa tesi ho contribuito a chiarire il meccanismo con cui Rif2 limita l'attivazione di Tel1 e le conseguenze di questa inibizione ai DSBs del DNA. Utilizzando AlphaFold Multimer, abbiamo convalidato la superficie di interazione tra il motivo MIN e Rad50. Inoltre, abbiamo studiato la mutazione rif2-S6E che amplifica l’inibizione di Rif2, aumentando l'interazione Rif2-Rad50. Rif2-S6E riduce il legame di Tel1 ai DSBs lasciando invariata l'associazione di MRX. Tale diminuzione comporta un difetto nel mantenimento dell’estremità di DNA legate, difetto che è soppresso da una variante iperattivata di Tel1, suggerendo un ruolo diretto di Tel1 nel mantenere le estremità di un DSB vicine tra loro. Infine, Rif2S6E stimola l'ATPasi di Rad50 e ostacola l'interazione Tel1-MRX in modo più efficiente rispetto a Rif2, indicando che Rad50 legato a Rif2 non è competente per il legame di Tel1. Un importante passaggio nel meccanismo di NHEJ sta nell'assicurare che le estremità dei DSBs siano mantenute in stretta vicinanza per facilitare la loro riunione, processo chiamato end-tethering. Questa funzione essenziale di ancoraggio delle estremità richiede azioni coordinate sia del complesso MRX/MRN che della proteina Sae2/CtIP. Nella seconda parte della tesi, ho investigato il ruolo del complesso Ku nel controllo del meccanismo di end-tethering. La caratterizzazione della mutazione ku70-C85Y, che aumenta l'affinità di Ku per il DNA, ha permesso di dimostrare che il complesso Ku promuove l’end-tethering e che la mutazione C85Y potenzia questa funzione aumentando il mantenimento di Ku molto vicino alle estremità del DNA. Abbiamo anche dimostrato che Tel1 contrasta la funzione di Ku nell’end-tethering, promuovendo la rimozione dei nucleosomi e probabilmente lo scorrimento di Ku verso l'interno. Poiché la presenza di Ku alle estremità delle rotture del DNA impedisce l'accesso alle nucleasi di resezione, la regolazione di Ku da parte di Tel1 nell’associazione alle estremità dei DSB fornisce uno livello importante di controllo nella scelta tra NHEJ e HR, suggerendo una nuova funzione di Tel1 nella risposta al danno al DNA. Complessivamente, i risultati riportati in questa tesi rivelano una modulazione complessa e dinamica della riparazione dei DSBs e dell'attivazione di Tel1/ATM. Il complesso Ku insieme al complesso MRX e a Sae2 contribuisce al processo essenziale di end-tethering, mentre la funzione regolatoria di Rif2 agisce limitando l'attivazione di Tel1 mediata da MRX. Comprendere i meccanismi di regolazione è cruciale per chiarire gli eventi molecolari che proteggono la stabilità del genoma e regolano la sofisticata riparazione del DNA.

(2024). The interplays between Rif2, Ku and Tel1 in the repair of DNA double-strand break. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

The interplays between Rif2, Ku and Tel1 in the repair of DNA double-strand break

PIZZUL, PAOLO
2024

Abstract

Genome instability stands as a prominent hallmark of cancer cells, often deriving from deficiencies in DNA repair processes. Among the different types of DNA damage, double-strand breaks (DSBs) emerge as hazardous lesions, known for their high cytotoxicity. To maintain genome stability and prevent cell death, it becomes fundamental that DSBs are recognizes and repaired accurately. In eukaryotic cells, the response to DSBs involves the activation of the DNA damage response (DDR), a comprehensive system of pathways dedicated to the repair of DNA breaks. The repair of DNA DSBs involves two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). In NHEJ pathway the broken DNA ends are directly ligated and in this mechanism are involved components like the Ku70-Ku80 heterodimer, which plays a critical role by binding to the damaged DNA. The HR process uses sister chromatids or homologous chromosomes as a template to repair the DNA break. HR is initiated by nucleolytic degradation (resection) of the 5’-terminated strands at both DSB ends. The Mre11-Rad50-Xrs2 (MRX) complex initiates resection of DNA DSBs via the Mre11 endonuclease activity and recruits Tel1/ATM kinase. The yeast Rif2 protein inhibits Mre11 endonuclease activity and Tel1/ATM activation through a short motif, called MIN, which is known to bind the Rad50 subunit and to stimulate its ATPase activity. In this thesis I contributed to clarify the mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA DSBs. By using AlphaFold Multimer modeling we pinpointed and validated the interaction surface between Rif2 MIN motif and Rad50. Furthermore, we engineered the rif2-S6E mutation that amplifies the inhibitory properties of Rif2 by increasing Rif2-Rad50 interaction. Rif2S6E diminishes the binding of Tel1 to DNA DSBs while leaving MRX association with DSBs unaffected. The reduced Tel1 association with DSBs in rif2-S6E cells results in impaired DSB end-tethering and together with the suppression of this defect by an hyperactivated variant of Tel1, suggest a direct role of Tel1 in maintaining the DSB ends closed to each other. Finally, Rif2S6E stimulates Rad50 ATPase and impairs Tel1-MRX interaction more efficiently than wild-type Rif2, indicating that Rif2-bound Rad50 is not competent for Tel1 binding. A crucial challenge within NHEJ pathway lies in ensuring that the ends of DSBs are kept in close proximity to facilitate their accurate and effective rejoining. This essential function of end-tethering requires the coordinated actions of both the MRX/MRN complex and the Sae2/CtIP protein. In the second part of the thesis, I investigated if the Ku complex could have a role in the control of the mechanism of end-tethering. The characterization of ku70-C85Y mutation, which increases Ku affinity for DNA, has allowed to show that the Ku complex promotes DSB end-tethering and the C85Y mutation enhances this bridging function by increasing Ku retention very close to the DSB ends. We also demonstrated that Tel1 antagonizes the Ku function in supporting end-tethering by promoting nucleosome removal and possibly Ku sliding inwards. As the presence of Ku at the DSB ends prevents the access of resection nucleases, the Tel1-mediated regulation of Ku association with the DSB ends provides an important layer of control in the choice between NHEJ and HR, suggesting a new function of Tel1 in the DNA damage response. Taken together, the findings reported in this thesis unveil a complex and dynamic modulation of DNA DSB repair and Tel1/ATM activation. Ku complex together with MRX complex and Sae2 contributes to the essential process of DSB end-tethering, while Rif2 regulatory function acts limiting MRX-mediated Tel1 activation. Understanding these regulatory mechanisms is crucial for gaining insights into the molecular events that safeguard genome stability and orchestrate the sophisticated response of DNA repair pathways.
LONGHESE, MARIA PIA
DSB; danni al DNA; Tel1; Rif2; Ku
DSB; DNA damage; Tel1; Rif2; Ku
BIO/18 - GENETICA
Italian
2-feb-2024
36
2022/2023
embargoed_20240802
(2024). The interplays between Rif2, Ku and Tel1 in the repair of DNA double-strand break. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_804489.pdf

embargo fino al 02/08/2024

Descrizione: Tesi dottorato Pizzul Paolo - revisione
Tipologia di allegato: Doctoral thesis
Dimensione 5.78 MB
Formato Adobe PDF
5.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/458600
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact