Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes degeneration of upper and lower motor neurons (MNs), consequent loss of muscles and progressive paralysis. Although it is predominantly idiopathic (sporadic ALS cases, sALS), several mutated genes have been associated with the pathology and, 10 % of the cases are categorized familial (fALS). The molecular mechanisms are largely unknown, but they converge on common pathways: mitochondria defects, oxidative stress, dysregulated RNA metabolism, formation of toxic protein aggregates, and neuroinflammation with glial contribution. To date, more than 150 distinct genes have been associated with a risk of ALS, among which SOD1 (Cu/Zn superoxide dismutase-1) is the first and most extensively studied one. It can induce toxicity through a gain-of-function mediated by the adoption of misfolded conformations and formation of protein aggregates. During my first year of PhD, I have performed a biochemical profiling of SOD1 fibroblasts derived from two ALS patients, carrying the p.L145F and the p.S135N missense variants. Our bioinformatic analysis, predicted a different effect of the two mutations on the protein structure in accordance with the diverse clinical presentation and disease progression of the two patients. Correspondingly, the metabolic profiles of patients’ fibroblasts, obtained through Seahorse assays, were diverse: while the SOD1L145F fibroblasts still relied more on oxidative phosphorylation, the SOD1S135N fibroblasts showed a metabolic shift toward glycolysis. SOD1S135N cells experiencing metabolic reframing might be caused by increased oxidative stress caused by the loss of SOD1 activity. Of note, the mutation with the most severe phenotypes at the protein and cellular level also corresponded to the most aggressive form of ALS. Even in familial case of ALS, mutations might have a highly variable penetrance. In the third year of my PhD, I have characterized the metabolic fingerprint of fibroblasts derived from one patient and asymptomatic members belonging to an Apulian family reporting cases of fALS related to the p.G376D mutation in the TARDBP gene, which encodes for the TDP-43 protein, a RNA/DNA binding protein involved in RNA metabolism, mainly localized in the nucleus. Hyper-phosphorylated and ubiquitinated TDP-43 deposits have been reported in the brain and spinal cord of ALS patients. Our work showed that fibroblasts have an unbalanced oxidative stress/antioxidant defense homeostasis that could lead or may be caused by mitochondrial defects. The Seahorse tests revealed an enhanced metabolic activity in the TARDBP fibroblasts corresponding to a higher ATP production respect to controls. Intriguingly, we observed, in the late-stage ALS fibroblasts a metabolic “reframing” and switch toward a prominently glycolytic phenotype to produce ATP Mitochondria impairments represent an underlying family trait, compensated in different ways depending on individual background and TDP-43 contributes to metabolic dysfunctions and energy defects in ALS pathogenesis. With the aim of corroborating our data and validate the possible role of metabolic impairments in ALS pathogenesis, we reprogrammed fibroblasts into Induced Pluripotent Stem Cells (iPSCs) to establish individual patient-specific cells for disease modelling such as MNs, the main cell type involved in ALS, but also neuroinflammatory cells. To investigate these aspects, I spent 5 months at University of Eastern Finland, to implement the generation of ALS- microglia and evaluate the influence of the disease on the functional properties of these cells. Our future perspective is to exploit iPSCs technology to produce disease-relevant cell phenotypes and to define fully-human, patient-tailored in vitro cell models of ALS allowing to dissect the mechanisms involved in disease progression with particular focus on neuroinflammation.

La Sclerosi Laterale Amiotrofica è una malattia neurodegenerativa, caratterizzata dalla perdita dei motoneuroni, che causa perdita muscolare con progressiva paralisi. Nonostante sia principalmente idiopatica (casi sporadici, sALS), diversi geni sono stati associati alla patologia e per il 10% è familiare (fALS). I meccanismi molecolari sono per lo più sconosciuti, ma convergono in pathways comuni: difetti mitocondriali, stress ossidativo, metabolismo dell’RNA deregolato, formazione di aggregati proteici tossici e neuro infiammazione con coinvolgimento della glia. 150 geni sono stati associati al rischio di SLA, tra i quali SOD1 (Cu/Zn superossido dismutasi- 1) è il primo e più studiato. Può indurre tossicità attraverso “gain-of-function”, mediata da conformazioni mal ripiegate e formazione di aggregati proteici. Durante il primo anno di dottorato, ho effettuato un’analisi biochimica di fibroblasti SOD1 derivati da due pazienti affetti da SLA, con le mutazioni p.L145F e p.S135N. L’analisi bioinformatica ha predetto diversi effetti delle mutazioni sulla struttura proteica, in accordo con le diverse presentazioni cliniche e progressioni della malattia nei pazienti. Concordemente, i profili metabolici dei fibroblasti, ottenuti tramite analisi Seahorse, sono diversi: mentre i fibroblasti SOD1L145F utilizzano maggiormente la fosforilazione ossidativa, i fibroblasti SOD1S135N mostrano uno shift verso la glicolisi. Questo riarrangiamento metabolico potrebbe essere causato da un aumento dello stress ossidativo dovuto dalla perdita dell’attività di SOD1, suggerendo che il fenotipo più grave a livello proteico e cellulare, corrisponde anche alla forma più aggressiva di SLA. Anche nei casi familiari, le mutazioni possono avere penetranza variabile. Ho caratterizzato il fingerprint metabolico di fibroblasti derivati da un paziente e un membro asintomatico di una famiglia italiana riportante casi di fALS legati alla mutazione p.G376D nel gene TARDBP, che codifica per la proteina TDP-43, che lega RNA e DNA, principalmente localizzata nel nucleo e coinvolta nel metabolismo dell’RNA. Depositi iper-fosforilati e ubiquitinati di TDP-43 sono stati riportati nel cervello e nel midollo spinale di pazienti affetti da SLA. Il nostro lavoro ha mostrato che i fibroblasti hanno uno sbilanciamento dell’omeostasi stress ossidativo/difese antiossidanti che può portare, o può essere causato da difetti mitocondriali. I test del Seahorse hanno mostrato un’aumentata attività metabolica nei fibroblasti TARDBP, che corrisponde a una maggiore produzione di ATP rispetto ai controlli. Abbiamo anche osservato, nel paziente allo stadio tardivo, un riarrangiamento metabolico verso un fenotipo prevalentemente glicolitico per la produzione di ATP. I danni mitocondriali rappresentano un tratto caratteristico della famiglia, che è compensato in vari modi a seconda del background genetico e TDP-43 contribuisce alle disfunzioni metaboliche e ai difetti energetici nella patogenesi della SLA. Con lo scopo di corroborare i nostri dati e validare un possibile ruolo dei problemi metabolici nella patogenesi della SLA, abbiamo riprogrammato i fibroblasti in cellule staminali pluripotenti indotte (iPSCs) per stabilire dei modelli basati su cellule derivati da pazienti, come moto neuroni, il principale tipo cellulare coinvolto nella SLA, ma anche cellule neuro infiammatorie. Per investigare questi aspetti, ho trascorso 5 mesi alla University of Eastern Finland, dove ho implementato la generazione di microglia per valutare l’influenza della malattia sulle funzionalità di queste cellule.. Le prospettive future prevedono l’utilizzo di tale tecnologia per produsse fenotipi cellulari rilevanti per la patologia e definire modelli cellulari in vitro completamente umani e personalizzati per il paziente, che ci permettano di studiare i meccanismi coinvolti nella progressione della malattia, con focus sulla neuroinfiammazione

(2024). CHALLENGING THE JIGSAW PUZZLE OF AMYOTROPHIC LATERAL SCLEROSIS: FROM THE STUDY OF CELL ENERGY METABOLISM IN SOD1 AND TARDBP MUTATED FIBROBLASTS TOWARDS STEM CELL MODELING. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

CHALLENGING THE JIGSAW PUZZLE OF AMYOTROPHIC LATERAL SCLEROSIS: FROM THE STUDY OF CELL ENERGY METABOLISM IN SOD1 AND TARDBP MUTATED FIBROBLASTS TOWARDS STEM CELL MODELING

PERCIBALLI, ELISA
2024

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes degeneration of upper and lower motor neurons (MNs), consequent loss of muscles and progressive paralysis. Although it is predominantly idiopathic (sporadic ALS cases, sALS), several mutated genes have been associated with the pathology and, 10 % of the cases are categorized familial (fALS). The molecular mechanisms are largely unknown, but they converge on common pathways: mitochondria defects, oxidative stress, dysregulated RNA metabolism, formation of toxic protein aggregates, and neuroinflammation with glial contribution. To date, more than 150 distinct genes have been associated with a risk of ALS, among which SOD1 (Cu/Zn superoxide dismutase-1) is the first and most extensively studied one. It can induce toxicity through a gain-of-function mediated by the adoption of misfolded conformations and formation of protein aggregates. During my first year of PhD, I have performed a biochemical profiling of SOD1 fibroblasts derived from two ALS patients, carrying the p.L145F and the p.S135N missense variants. Our bioinformatic analysis, predicted a different effect of the two mutations on the protein structure in accordance with the diverse clinical presentation and disease progression of the two patients. Correspondingly, the metabolic profiles of patients’ fibroblasts, obtained through Seahorse assays, were diverse: while the SOD1L145F fibroblasts still relied more on oxidative phosphorylation, the SOD1S135N fibroblasts showed a metabolic shift toward glycolysis. SOD1S135N cells experiencing metabolic reframing might be caused by increased oxidative stress caused by the loss of SOD1 activity. Of note, the mutation with the most severe phenotypes at the protein and cellular level also corresponded to the most aggressive form of ALS. Even in familial case of ALS, mutations might have a highly variable penetrance. In the third year of my PhD, I have characterized the metabolic fingerprint of fibroblasts derived from one patient and asymptomatic members belonging to an Apulian family reporting cases of fALS related to the p.G376D mutation in the TARDBP gene, which encodes for the TDP-43 protein, a RNA/DNA binding protein involved in RNA metabolism, mainly localized in the nucleus. Hyper-phosphorylated and ubiquitinated TDP-43 deposits have been reported in the brain and spinal cord of ALS patients. Our work showed that fibroblasts have an unbalanced oxidative stress/antioxidant defense homeostasis that could lead or may be caused by mitochondrial defects. The Seahorse tests revealed an enhanced metabolic activity in the TARDBP fibroblasts corresponding to a higher ATP production respect to controls. Intriguingly, we observed, in the late-stage ALS fibroblasts a metabolic “reframing” and switch toward a prominently glycolytic phenotype to produce ATP Mitochondria impairments represent an underlying family trait, compensated in different ways depending on individual background and TDP-43 contributes to metabolic dysfunctions and energy defects in ALS pathogenesis. With the aim of corroborating our data and validate the possible role of metabolic impairments in ALS pathogenesis, we reprogrammed fibroblasts into Induced Pluripotent Stem Cells (iPSCs) to establish individual patient-specific cells for disease modelling such as MNs, the main cell type involved in ALS, but also neuroinflammatory cells. To investigate these aspects, I spent 5 months at University of Eastern Finland, to implement the generation of ALS- microglia and evaluate the influence of the disease on the functional properties of these cells. Our future perspective is to exploit iPSCs technology to produce disease-relevant cell phenotypes and to define fully-human, patient-tailored in vitro cell models of ALS allowing to dissect the mechanisms involved in disease progression with particular focus on neuroinflammation.
FERRARI, DANIELA
PESCINI, DARIO
SLA; Metabolismo; SOD1; TARDBP; Modelli di malattia
ALS; Energy Metabolism; SOD1; TARDBP; Disease models
BIO/13 - BIOLOGIA APPLICATA
English
2-feb-2024
36
2022/2023
embargoed_20270202
(2024). CHALLENGING THE JIGSAW PUZZLE OF AMYOTROPHIC LATERAL SCLEROSIS: FROM THE STUDY OF CELL ENERGY METABOLISM IN SOD1 AND TARDBP MUTATED FIBROBLASTS TOWARDS STEM CELL MODELING. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_870292.pdf

embargo fino al 02/02/2027

Descrizione: Tesi di Perciballi Elisa - 870292
Tipologia di allegato: Doctoral thesis
Dimensione 8.78 MB
Formato Adobe PDF
8.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/458599
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact