Polymeric materials play a crucial role in our daily life dominating many applications and wide markets. However, polymer science faces ongoing challenges, particularly in developing precise and sustainable methods for the fabrication of advanced materials across multiple disciplines. Free radical polymerization (FRP) is the most common industrial method for polymer synthesis, offering simplicity, relatively low temperatures, and versatility. However, it has important limitations, such as the lack of control over molecular weight and morphology. In the last decades, Reversible-Deactivation Radical Polymerization (RDRP) has revolutionized polymer chemistry, allowing for precise control over molecular weight, morphology, and post-polymerization modifications. One prominent RDRP technique is the reversible addition-fragmentation chain transfer (RAFT) polymerization. In 2014 this technique was merged with photochemistry, culminating in Photoinduced Electron/Energy Transfer (PET)-RAFT polymerization, as an alternative to traditional RAFT. It offers advantages such as oxygen tolerance, room temperature polymerization, and spatiotemporal control, opening new applications in lithography, 3D printing, biomedicine, etc. Finally, the PET-RAFT offers intriguing advantages in the field of sustainability, in fact the RAFT mechanism is based on an equilibrium that can be exploited not only for polymerization but also for depolymerization. The goal of this thesis is to elucidate the potential of light-induced PET-RAFT control polymerization, by the examination of its underlying mechanisms, its applicability in material manufacturing, and its potential role in chemical recycling. Within the scope of this research, various photocatalysts have been studied and tailored to specific goals. These include titanium dioxide (TiO2), Porphyrin-based catalysts, CsPbBr3 nanocrystals, and Eosin Y. Specifically, the utilization of TiO2 offered a unique opportunity to explore the polymerization mechanisms involving heterogeneous catalysts, shedding light on surface interactions. Nevertheless, a drawback of TiO2 lies in its high-energy UV light requirement for activation. To overcome this limitation, nitrogen doping of the photocatalyst was employed to shift its light absorption to less energetic blue light, enabling a more controlled and efficient polymerization process. Porphyrin-based catalysts (containing Zn and Pt metal centers, ZnTPP, and PtOEP), and CsPbBr3 perovskite nanocrystals were used in a more applicative approach, leading to the development of synthetic procedures with potential applications in nanotechnology. In both cases, the photoactive compound served a dual role as the photocatalyst and the cargo/filler within the final material. ZnTPP and PtOEP were involved in the production of block copolymers with a poly(dimethyl acrylamide) hard shell and a poly(butyl acrylate) soft core. The polymerization of the latter block induced the self-assembly of the nanoparticle, encapsulating the porphyrin directly. This process was developed with the ultimate goal of generating nano-objects for converting long wavelength light in more energetic irradiation, known as light upconversion. Similarly, CsPbBr3 perovskite nanocrystals were used in the bulk polymerization of poly (methyl methacrylate), where the photocatalyst acted as a filler in the final plastic nanocomposite. The use of PET-RAFT, as opposed to traditional FRP, played a pivotal role in the synthesis of homogeneous composites with a high perovskite loading, achieved at room temperature and in the presence of oxygen. The thesis culminates in the development of a photo-assisted chemical depolymerization technique for RAFT-made polymers. Eosin Y was utilized as the photocatalyst under different conditions, including different wavelengths, solvents, and polymers, resulting in low-temperature depolymerization and precise temporal control.
I materiali polimerici svolgono un ruolo cruciale nella nostra vita quotidiana, tuttavia, la scienza dei polimeri si trova di fronte a sfide continue, in particolare nello sviluppo di metodi precisi e sostenibili per la fabbricazione di materiali avanzati in molte discipline. La polimerizzazione “free-radical” (FRP) è il metodo industriale più comune per la sintesi dei polimeri, in quanto offre semplicità, temperature relativamente basse (60-80 °C) e versatilità. Tuttavia, presenta importanti limitazioni, come la mancanza di controllo sul peso molecolare e sulla morfologia. Negli ultimi decenni, lo sviluppo di tecniche di polimerizzazione controllate (Reversible-Deactivation Radical Polymerization, RDRP) ha rivoluzionato la chimica dei polimeri, consentendo un controllo preciso del peso molecolare, della morfologia e delle modifiche successive alla polimerizzazione. Una tecnica RDRP di spicco è la polimerizzazione RAFT (reversible addition-fragmentation chain transfer). Nel 2014 questa tecnica è stata fusa con la fotochimica, culminando nella polimerizzazione PET (Photoinduced Electron/Energy Transfer)-RAFT, come alternativa alla RAFT tradizionale. Questa offre ulteriori vantaggi come la tolleranza all'ossigeno, la polimerizzazione a temperatura ambiente e il controllo spazio-temporale, aprendo nuove applicazioni in campi come litografia, la stampa 3D, la biomedicina, e molte altre. Infine, il meccanismo PET-RAFT offre intriganti vantaggi nel campo della sostenibilità, con l'impegno a sviluppare strategie di riciclo nuove o più efficienti per creare un'economia circolare per le plastiche tradizionali. Questa tesi mira a esaltare il potenziale della PET-RAFT indotta dalla luce, attraverso lo studio del suo meccanismo, la sua applicabilità nella produzione di materiali e il suo possibile ruolo nel riciclo chimico. All'interno di questo ambito di ricerca, sono stati studiati vari fotocatalizzatori a seconda dello scopo. Tra questi, nanoparticelle di biossido di titanio (TiO2), catalizzatori porfirinici, nano cristalli di CsPbBr3 e Eosina Y. In particolare, l'utilizzo di TiO2 ha permesso di esplorare i meccanismi di polimerizzazione che coinvolgono catalizzatori eterogenei, focalizzandosi sulle interazioni superficiali. Tuttavia, la TiO2 ha lo svantaggio di necessitare di una radiazione UV ad alta energia per essere attivata. Perciò, il fotocatalizzatore è stato dopato con azoto in modo da spostare il suo assorbimento verso energie minori, consentendo un processo di polimerizzazione più controllato ed efficiente. I catalizzatori a base di porfirina (contenenti centri metallici di Zn e Pt, rispettivamente ZnTPP e PtOEP) e CsPbBr3 sono stati usati in un approccio più applicativo, portando allo sviluppo di procedure sintetiche con potenziali applicazioni nanotecnologiche. In entrambi i casi, il composto fotoattivo ha svolto un duplice ruolo, quello di fotocatalizzatore e di cargo/filler all'interno del materiale finale. ZnTPP e PtOEP sono stati utilizzati per la produzione di copolimeri a blocchi con una corona rigida e un nucleo morbido. La polimerizzazione induce l'auto-assemblaggio delle nanoparticelle, incapsulando direttamente la porfirina. Questo processo è stato sviluppato con l'obiettivo finale di generare nano-oggetti in grado di convertire la luce a bassa energia in radiazione più energetica, processo noto come upconversion. Allo stesso modo, i nano cristalli di CsPbBr3 sono stati utilizzati nella polimerizzazione bulk del PMMA, dove il fotocatalizzatore alla fine diventa il filler della matrice plastica. L'uso del PET-RAFT, in opposizione alla tradizionale FRP, ha svolto un ruolo cruciale nella sintesi di compositi omogenei con un'elevata carica di perovskite, ottenuti a temperatura ambiente e in presenza di ossigeno. La tesi si conclude con lo sviluppo di una tecnica di depolimerizzazione chimica assistita dalla luce per polimeri realizzati con la tecnica RAFT usando Eosina Y come fotocatalizzatore.
(2024). Exploration of Photocatalyzed PET-RAFT Polymerization: from Polymer Synthesis to Polymer Recycling. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Exploration of Photocatalyzed PET-RAFT Polymerization: from Polymer Synthesis to Polymer Recycling
BELLOTTI, VALENTINA
2024
Abstract
Polymeric materials play a crucial role in our daily life dominating many applications and wide markets. However, polymer science faces ongoing challenges, particularly in developing precise and sustainable methods for the fabrication of advanced materials across multiple disciplines. Free radical polymerization (FRP) is the most common industrial method for polymer synthesis, offering simplicity, relatively low temperatures, and versatility. However, it has important limitations, such as the lack of control over molecular weight and morphology. In the last decades, Reversible-Deactivation Radical Polymerization (RDRP) has revolutionized polymer chemistry, allowing for precise control over molecular weight, morphology, and post-polymerization modifications. One prominent RDRP technique is the reversible addition-fragmentation chain transfer (RAFT) polymerization. In 2014 this technique was merged with photochemistry, culminating in Photoinduced Electron/Energy Transfer (PET)-RAFT polymerization, as an alternative to traditional RAFT. It offers advantages such as oxygen tolerance, room temperature polymerization, and spatiotemporal control, opening new applications in lithography, 3D printing, biomedicine, etc. Finally, the PET-RAFT offers intriguing advantages in the field of sustainability, in fact the RAFT mechanism is based on an equilibrium that can be exploited not only for polymerization but also for depolymerization. The goal of this thesis is to elucidate the potential of light-induced PET-RAFT control polymerization, by the examination of its underlying mechanisms, its applicability in material manufacturing, and its potential role in chemical recycling. Within the scope of this research, various photocatalysts have been studied and tailored to specific goals. These include titanium dioxide (TiO2), Porphyrin-based catalysts, CsPbBr3 nanocrystals, and Eosin Y. Specifically, the utilization of TiO2 offered a unique opportunity to explore the polymerization mechanisms involving heterogeneous catalysts, shedding light on surface interactions. Nevertheless, a drawback of TiO2 lies in its high-energy UV light requirement for activation. To overcome this limitation, nitrogen doping of the photocatalyst was employed to shift its light absorption to less energetic blue light, enabling a more controlled and efficient polymerization process. Porphyrin-based catalysts (containing Zn and Pt metal centers, ZnTPP, and PtOEP), and CsPbBr3 perovskite nanocrystals were used in a more applicative approach, leading to the development of synthetic procedures with potential applications in nanotechnology. In both cases, the photoactive compound served a dual role as the photocatalyst and the cargo/filler within the final material. ZnTPP and PtOEP were involved in the production of block copolymers with a poly(dimethyl acrylamide) hard shell and a poly(butyl acrylate) soft core. The polymerization of the latter block induced the self-assembly of the nanoparticle, encapsulating the porphyrin directly. This process was developed with the ultimate goal of generating nano-objects for converting long wavelength light in more energetic irradiation, known as light upconversion. Similarly, CsPbBr3 perovskite nanocrystals were used in the bulk polymerization of poly (methyl methacrylate), where the photocatalyst acted as a filler in the final plastic nanocomposite. The use of PET-RAFT, as opposed to traditional FRP, played a pivotal role in the synthesis of homogeneous composites with a high perovskite loading, achieved at room temperature and in the presence of oxygen. The thesis culminates in the development of a photo-assisted chemical depolymerization technique for RAFT-made polymers. Eosin Y was utilized as the photocatalyst under different conditions, including different wavelengths, solvents, and polymers, resulting in low-temperature depolymerization and precise temporal control.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_806779.pdf
embargo fino al 30/01/2026
Descrizione: Tesi Valentina Bellotti modificata in seguito ai commenti dei reviewers
Tipologia di allegato:
Doctoral thesis
Dimensione
5.86 MB
Formato
Adobe PDF
|
5.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.