Currently, worldwide coral reefs are facing mass mortalities of reef-building corals and these phenomena are mainly driven by recurrent marine heat waves as a consequence of global climate change. Furthermore, the increasing plastic pollution in coastal waters is an emerging stressor that affects reef-building corals worldwide. Especially microplastic (MP, i.e., particles <1 mm) and nanoplastic (NP, i.e., particles<1µm) are suspected to pose an additional threat to corals. Previous studies already documented ingestion, egestion, and retention of plastic particles. These responses can have adverse effects on the organisms, causing decreases in energy reserves, feeding capacity, or fecundity. Unfortunately, there are knowledge gaps regarding the effects of microplastic and nanoplastic impact on coral reefs. First, previous investigations have mainly been done in reef-building corals. However, little is known about the responses of soft corals, which are also fundamental for coral reefs services. Furthermore, this study assesses for the first time the egestion rate of microplastic ccombined with heat stress. This research assesses and provides an overview of how plastic pollution impacts different genera of tropical corals and the combined effect of microplastic and heat stress. Firstly, the adhesion and ingestion rate of polyethylene microbeads were assessed on the tropical coral Coelogorgia palmosa. Secondly, the impact of secondary nanoplastics of Polypropylene (PP) has been evaluated on the tropical soft coral Pinnigorgia flava, monitoring the health status of coral nubbins by applying a standardized protocol for evaluating the health status of corals in response to pollutants. In conclusion, the reef-building coral species Pocillopora damicornis has been selected to evaluate the combined effect of microplastic pollution and heat stress, to achieve it P.damicornis nubbins were exposed to two different concentrations of PE at 25 and 30°C. results showed that C.palmosa had plastic microbeads adhered to the surface and the microbeads were embedded within mucus filaments produced by coral nubbins, therefore in response to microplastic corals produce mucus as a microplastic tra from the surrounding water column, in fact we found statistical strong ositive correlation among the presence of mucus and the number of adhered. Furthermore, C.palmosa in both exposure treatments was able to ingest microplastic, but in a lesser extent than reef-building corals. Secondly PP NPs caused no mortality on Pinnigorgia flava, but evident stress effects were registered on corals. Significant differences in abnormal production of mucus, polyps’ retraction and coral tissue bleaching were found in relation to nanoplastic concentration. Basing on these results, NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect concentration) on P.flava fragments after 72h of exposure with secondary PP nanoplastics were 0.1mg/L and 10 mg/L respectively. Regarding the combined effects of Microplastic pollution and heat stress, here we found microplastic ingestion, adhesion and egestion microplastic at environmentally relevant concentrations (200 microbeads/L-1). No significant difference was observed in microplastic ingestion among treatments. However, thermally stressed corals had higher micro-plastic ingestion and egestion rate at high microplastic concentrations. We also found that microplastic had less impact on coral bleaching compared to heat stress. Furthermore, we found that microplastic exposure produces an increase in Lipid Peroxidase production at both temperatures. We anticipate our assay to be a starting point for more species-specific in vitro microplastic-coral biomolecular studies. Furthermore, this study highlights that mitigating ocean warming remains of uttermost importance to conserve coral reefs while managing the emergence of new threats like microplastic and nanoplastic pollution.

Le scogliere coralline di tutto il mondo sono minacciate da fenomeni dimortalità di massa. Questi fenomeni sono principalmente guidati da ricorrenti ondate di calore marino come conseguenza del cambiamento climatico globale. Lo stress termico interrompe la simbiosi obbligata dei coralli ermatipici con le microalghe dinoflagellate (Symbiodiniaceae) e provoca lo sbiancamento dei coralli ed eventualmente la loro morte. Inoltre, il crescente inquinamento da micro (MP, particelle <1 mm)e nano (NP, particelle <1µm) plastica è un fattore di stress emergente che colpisce le scogliere coralline. La conoscenza sull'impatto della microplastica e della nanoplastica sulle scogliere coralline e` attualmente limitata. Gli studi precedenti riguardavano principalmente i coralli ermatipici. Tuttavia, riguardo ai coralli molli, ecologicamente fondamentali nelle scogliere coralline, ci sono delle lacune da colmare. La maggioranza degli studi precedenti si è concentrata sugli effetti negativi della microplastica legati all'ingestione di particelle, ma pochi studi hanno analizzato il tasso di egestione della microplastica associata allo stress termico. Questa ricerca fornisce una panoramica di come l'inquinamento da plastica influisce su diversi generi di coralli tropicali. In primo luogo, sono state valutate l'adesione e il tasso di ingestione di microsfere di polietilene (PE) sul corallo tropicale Coelogorgia palmosa. Successivamente, è stato valutato l'impatto delle nanoplastiche secondarie di Polipropilene (PP) sul corallo molle tropicale Pinnigorgia flava, monitorando lo stato di salute dei frammenti tramite un protocollo standardizzato per la valutazione dello stato di salute dei coralli esposti a inquinanti. In conclusione, la specie corallina Pocillopora damicornis è stata selezionata per valutare l'effetto combinato dell'inquinamento da microplastica e stress termico. Frammenti di P.damicornis sono stati esposti a due diverse concentrazioni di PE a 25 e 30°C. I risultati riportano che C.palmosa presenta microsfere di plastica aderite alla superficie e le microsfere erano incorporate all'interno di filamenti di muco prodotti dal corallo, quindi in risposta alla microplastica i coralli producono muco che sottrae microplastica dalla colonna d'acqua circostante. Infatti abbiamo trovato statistiche forti correlazione positiva tra la presenza di muco e microplastiche adese. Inoltre, C.palmosa in entrambi i trattamenti ha ingerito microplastihe, ma in misura minore rispetto ai coralli ermatipici. In secondo luogo, le nanofibre non hanno causato mortalità, ma sono stati registrati evidenti effetti di stress in P.flava. Sono state riscontrate differenze significative nella produzione anormale di muco, chiusura dei polipi e sbiancamento del tessuto in relazione alla concentrazione di nanoplastica. Sulla base di questi risultati, la NOEC (concentrazione senza effetto osservato) e la LOEC (concentrazione con effetto più basso osservato) sui frammenti di P.flava dopo 72 ore di esposizione con nanoplastiche secondarie erano rispettivamente di 0,1 mg/L e 10 mg/L. Per quanto riguarda gli effetti combinati delle microplastica e stress termico, abbiamo trovato ingestione, adesione ed egestione di microplastica a concentrazioni rilevanti dal punto di vista ambientale (200 microsfere/L-1). Tuttavia, i coralli sottoposti a stress termico presentavano un tasso di ingestione e di egestione più elevato a concentrazioni elevate di microplastica (2000 microsfere/L-1). I risultati mostrano che la microplastica ha avuto un impatto minore sullo sbiancamento dei coralli rispetto allo stress termico. Inoltre, l'esposizione alla microplastica produce un aumento della produzione di stress ossidativo ad entrambe le temperature. Questo studio evidenzia che mitigare il riscaldamento degli oceani rimane della massima importanza per conservare le scogliere coralline gestendo l'emergere di nuove minacce come l'inquinamento da micro e nano plastica.

(2023). Plastic pollution in coral reefs: interaction patterns between primary and secondary micro and nano plastic particles and tropical corals in controlled environments. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Plastic pollution in coral reefs: interaction patterns between primary and secondary micro and nano plastic particles and tropical corals in controlled environments

ISA, VALERIO
2023

Abstract

Currently, worldwide coral reefs are facing mass mortalities of reef-building corals and these phenomena are mainly driven by recurrent marine heat waves as a consequence of global climate change. Furthermore, the increasing plastic pollution in coastal waters is an emerging stressor that affects reef-building corals worldwide. Especially microplastic (MP, i.e., particles <1 mm) and nanoplastic (NP, i.e., particles<1µm) are suspected to pose an additional threat to corals. Previous studies already documented ingestion, egestion, and retention of plastic particles. These responses can have adverse effects on the organisms, causing decreases in energy reserves, feeding capacity, or fecundity. Unfortunately, there are knowledge gaps regarding the effects of microplastic and nanoplastic impact on coral reefs. First, previous investigations have mainly been done in reef-building corals. However, little is known about the responses of soft corals, which are also fundamental for coral reefs services. Furthermore, this study assesses for the first time the egestion rate of microplastic ccombined with heat stress. This research assesses and provides an overview of how plastic pollution impacts different genera of tropical corals and the combined effect of microplastic and heat stress. Firstly, the adhesion and ingestion rate of polyethylene microbeads were assessed on the tropical coral Coelogorgia palmosa. Secondly, the impact of secondary nanoplastics of Polypropylene (PP) has been evaluated on the tropical soft coral Pinnigorgia flava, monitoring the health status of coral nubbins by applying a standardized protocol for evaluating the health status of corals in response to pollutants. In conclusion, the reef-building coral species Pocillopora damicornis has been selected to evaluate the combined effect of microplastic pollution and heat stress, to achieve it P.damicornis nubbins were exposed to two different concentrations of PE at 25 and 30°C. results showed that C.palmosa had plastic microbeads adhered to the surface and the microbeads were embedded within mucus filaments produced by coral nubbins, therefore in response to microplastic corals produce mucus as a microplastic tra from the surrounding water column, in fact we found statistical strong ositive correlation among the presence of mucus and the number of adhered. Furthermore, C.palmosa in both exposure treatments was able to ingest microplastic, but in a lesser extent than reef-building corals. Secondly PP NPs caused no mortality on Pinnigorgia flava, but evident stress effects were registered on corals. Significant differences in abnormal production of mucus, polyps’ retraction and coral tissue bleaching were found in relation to nanoplastic concentration. Basing on these results, NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect concentration) on P.flava fragments after 72h of exposure with secondary PP nanoplastics were 0.1mg/L and 10 mg/L respectively. Regarding the combined effects of Microplastic pollution and heat stress, here we found microplastic ingestion, adhesion and egestion microplastic at environmentally relevant concentrations (200 microbeads/L-1). No significant difference was observed in microplastic ingestion among treatments. However, thermally stressed corals had higher micro-plastic ingestion and egestion rate at high microplastic concentrations. We also found that microplastic had less impact on coral bleaching compared to heat stress. Furthermore, we found that microplastic exposure produces an increase in Lipid Peroxidase production at both temperatures. We anticipate our assay to be a starting point for more species-specific in vitro microplastic-coral biomolecular studies. Furthermore, this study highlights that mitigating ocean warming remains of uttermost importance to conserve coral reefs while managing the emergence of new threats like microplastic and nanoplastic pollution.
SEVESO, DAVIDE
FINIZIO, ANTONIO
Microplastica; nanoplatica; Coralli; stress termico; inquinamento
Microplastic; nanoplastic; Corals; Pollution; Heat stress
BIO/07 - ECOLOGIA
English
3-mag-2023
35
2021/2022
open
(2023). Plastic pollution in coral reefs: interaction patterns between primary and secondary micro and nano plastic particles and tropical corals in controlled environments. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_745913.pdf

accesso aperto

Descrizione: Plastic pollution in coral reefs: interaction patterns between primary and secondary micro and nano plastic particles and tropical corals in controlled environments
Tipologia di allegato: Doctoral thesis
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/418141
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact