Focus of this PhD thesis is the validation of a high-throughput production process for three different Earth-abundant chalcogenides applied in TF PV technology: Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS) and Cu2MnSnS4 (CMTS). The adsorber layer has been produced with a two steps process: the deposition of the metallic precursors on the substrate by magnetron sputtering followed by sulphurisation in oven with elemental sulphur. After the characterization of the grown material, prototypal solar cells (SCs) have been realized and characterized. The results on the CZTS TF demonstrated the good performances of the production processes: the CZTS material obtained showed high quality, good homogeneity, and absence of secondary phases. The SCs obtained with this TFs exhibited PV performances in line with literature. The application of two different PDTs raised the efficiencies of the SCs, leading to a record SC with η=4.5%, JSC=15.1mA/cm2, VOC=561mV and FF=54%. Defectivity studies showed the presence of antisite couples CuZn+ZnCu. The work on CFTS has been more explorative: a wider compositional condition has been explored, to correlate the compositional ratios of CFTS samples with the presence of secondary phases. Three different secondary phases have been detected: rhodostannite, chalcopyrite, and iron sulphide. The application of two different approaches in the metal deposition demonstrated the strong correlation between uniformity of the material and the steadiness of the deposition rate. The study of oxidation state of the elements in the TF showed that Fe atoms are present both as Fe2+ and as Fe3+. As for CFTS, the work on CMTS tested the correlation between TF composition and the presence of secondary phases. Two different secondary phases have been observed: thiospinel and manganese sulphide. With pure CMTS samples, we obtained SC with discrete efficiencies. The application of the PDT studied for CZTS increased the final performances of these devices, leading to a record device of η=0.89% VOC=430mV, JSC=6.14mA/cm2 and FF=33,69%. The VOC value was, to the best of our knowledge, the highest reported in literature. Defect studies showed the presence of VCu defects and the absence of antisite defects CuZn+ZnCu, but oxidation states studies showed the presence of MnO inside the obtained TF, that strongly affect the material conduction properties.
L'obiettivo di questa tesi di dottorato è la convalida di un processo di produzione ad alto rendimento per tre diversi calcogenuri terrestri abbondanti applicati nella tecnologia TF PV: Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS) e Cu2MnSnS4 (CMTS). Lo strato adsorbente è stato prodotto con un processo in due fasi: la deposizione dei precursori metallici sul substrato mediante magnetron sputtering seguita da solforazione in forno con zolfo elementare. Dopo la caratterizzazione del materiale cresciuto, sono state realizzate e caratterizzate celle solari prototipali. I risultati sul CZTS hanno dimostrato le buone prestazioni dei processi produttivi: il materiale ottenuto ha mostrato alta qualità, buona omogeneità e assenza di fasi secondarie. Gli SC ottenuti con questi film sottili hanno mostrato prestazioni fotovoltaiche in linea con la letteratura. L'applicazione di due diversi trattamenti post deposizione ha aumentato l'efficienza delle celle solari, portando a un dispositivo record con η=4,5%, JSC=15,1mA/cm2, VOC=561mV e FF=54%. Studi di difettosità hanno mostrato la presenza di coppie antisito CuZn+ZnCu. Il lavoro su CFTS è stato più esplorativo: è stata esplorata una regione compositiva più ampia, per correlare i rapporti stechiometrici dei campioni CFTS con la presenza di fasi secondarie. Sono state rilevate tre diverse fasi secondarie: rodostannite, calcopirite e solfuro di ferro. L'applicazione di due diversi approcci nella deposizione del metallo ha dimostrato la forte correlazione tra l'uniformità del materiale e la stabilità del rate di deposizione. Lo studio dello stato di ossidazione degli elementi nel film sottile ha mostrato che gli atomi di Fe sono presenti sia come Fe2+ che come Fe3+. Come per CFTS, il lavoro su CMTS ha testato la correlazione tra la composizione del film sottile e la presenza di fasi secondarie. Sono state osservate due diverse fasi secondarie: tiospinello e solfuro di manganese. Con campioni CMTS puri, abbiamo ottenuto celle solari con efficienze discrete. L'applicazione dei trattamenti post deposizione studiati per CZTS ha aumentato le prestazioni finali di questi dispositivi, portando ad un dispositivo record di η=0.89% VOC=430mV, JSC=6.14mA/cm2 e FF=33,69%. Il valore VOC è stato, per quanto a nostra conoscenza, il più alto riportato in letteratura. Gli studi sui difetti hanno mostrato la presenza di difetti VCu e l'assenza di difetti antisito CuZn+ZnCu, ma gli studi sugli stati di ossidazione hanno mostrato la presenza di MnO all'interno del film sottile ottenuto, che influisce fortemente sulle proprietà di conduzione del materiale.
(2023). DEVELOPMENT OF EARTH-ABUNDANT CHALCOGENIDE THIN FILMS FOR PHOTOVOLTAIC APPLICATION. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
DEVELOPMENT OF EARTH-ABUNDANT CHALCOGENIDE THIN FILMS FOR PHOTOVOLTAIC APPLICATION
FRIONI, LUIGI
2023
Abstract
Focus of this PhD thesis is the validation of a high-throughput production process for three different Earth-abundant chalcogenides applied in TF PV technology: Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS) and Cu2MnSnS4 (CMTS). The adsorber layer has been produced with a two steps process: the deposition of the metallic precursors on the substrate by magnetron sputtering followed by sulphurisation in oven with elemental sulphur. After the characterization of the grown material, prototypal solar cells (SCs) have been realized and characterized. The results on the CZTS TF demonstrated the good performances of the production processes: the CZTS material obtained showed high quality, good homogeneity, and absence of secondary phases. The SCs obtained with this TFs exhibited PV performances in line with literature. The application of two different PDTs raised the efficiencies of the SCs, leading to a record SC with η=4.5%, JSC=15.1mA/cm2, VOC=561mV and FF=54%. Defectivity studies showed the presence of antisite couples CuZn+ZnCu. The work on CFTS has been more explorative: a wider compositional condition has been explored, to correlate the compositional ratios of CFTS samples with the presence of secondary phases. Three different secondary phases have been detected: rhodostannite, chalcopyrite, and iron sulphide. The application of two different approaches in the metal deposition demonstrated the strong correlation between uniformity of the material and the steadiness of the deposition rate. The study of oxidation state of the elements in the TF showed that Fe atoms are present both as Fe2+ and as Fe3+. As for CFTS, the work on CMTS tested the correlation between TF composition and the presence of secondary phases. Two different secondary phases have been observed: thiospinel and manganese sulphide. With pure CMTS samples, we obtained SC with discrete efficiencies. The application of the PDT studied for CZTS increased the final performances of these devices, leading to a record device of η=0.89% VOC=430mV, JSC=6.14mA/cm2 and FF=33,69%. The VOC value was, to the best of our knowledge, the highest reported in literature. Defect studies showed the presence of VCu defects and the absence of antisite defects CuZn+ZnCu, but oxidation states studies showed the presence of MnO inside the obtained TF, that strongly affect the material conduction properties.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_735930.pdf
accesso aperto
Descrizione: DEVELOPMENT OF EARTH-ABUNDANT CHALCOGENIDE THIN FILMS FOR PHOTOVOLTAIC APPLICATION
Tipologia di allegato:
Doctoral thesis
Dimensione
14.64 MB
Formato
Adobe PDF
|
14.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.