Acute Lymphoblastic Leukaemia occurring in patients younger than 1 year and carrying the MLL gene rearrangement (MLLr infant ALL) is a rare but very aggressive type of leukemia associated with poor outcome. Despite the improvements achieved in the last decades in the field of pediatric hemato-oncology, infants with MLLr ALL still suffer from a dismal prognosis compared to older children. This is mainly due to therapy resistance (like Glucocorticoids) and a high incidence of disease relapse. The biological mechanisms involved in the pathogenesis and drug resistance of MLLr leukemia are not completely understood so far. Therefore, the identification of crucial and druggable genes is urgently needed to develop novel therapeutic strategies. This was the main topic of the study described in Chapter 2. Specifically, the aim of this study was to unravel the functional role of the RNA Binding Protein Musashi-2 (MSI2) in infant MLLr ALL. MSI2 is known to play a crucial role in cell proliferation, differentiation and maintenance of the stem cell pool in both normal haematopoiesis and in Leukemia. Although the crucial role of MSI2 was demonstrated in myeloid leukemia, chronic lymphoblastic leukemia and B-cell lymphoma, in the context of B-ALL our knowledge is limited. In our study we generated a human MLL::AF4+ ALL cell line with MSI2 knock-out (SEM MSI2 KO) by using the CRISPR/CAS9 genome editing technology. We demonstrated that MSI2 KO cells have a proliferation disadvantage in vitro and display an impaired leukemia-initiating capacity and a lower disease burden in vivo in a xenotransplantation mouse model. Additionally, by performing a high-throughput drug screening we observed that MSI2 KO cells show a marked sensitivity to Glucocorticoids (GCs) compared to control cells typically GC-resistant. This finding was also validated in patient-derived xenograft (PDX) samples from MLLr infant ALL patients treated with the small compound inhibitor of MSI2 Ro 08-2750, and the combination treatment with Ro 08-2750 and GCs resulted to have a synergistic effect. By further investigating the biological mechanisms possibly involved in GC resistance/sensitization, we observed that MSI2 is involved in the regulation of the bioenergetic metabolism of leukemic cells (in particular mitochondrial respiration). Overall our data provided new insight into the metabolic vulnerabilities of leukemia, and pave the way to targeting MSI2 or mitochondrial respiration (using Oxphos inhibitors, in combination with other drugs) as a possible therapeutic strategy. Finally, we found that the MSI2 inhibitor Ro 08-2750 acts synergistically also in combination with the pro-apoptotic compound, Venetoclax (ABT-199) both in cell line in vitro and in PDX samples ex-vivo. In the Chapter 3, we aimed at targeting MSI2 in MLLr infant ALL primary patient’s sample. To achieve this goal, we successfully set up a shRNA anti-MSI2 lentiviral vector system to generate PDXs with MSI2 knock-down (KD). The RNA interference of MSI2 was validated in a MLL::AF4+ cell line, and applied to three MLLr infant ALL PDX samples. Further functional studies will be the topic of future to corroborate the role of MSI2 in primary patients with MLLr infant ALL. Finally, during my PhD I was primarily involved in a collaborative study aimed at identifying novel potential drugs to target “difficult to treat” high-risk ALL patients (Chapter 4). Nowadays the current therapy used to treat infants with MLLr ALL were not able to ameliorate their poor outcome, therefore the identification of novel and more effective compounds is un unmet need. In this study we set up a high throughput drug screening platform to screen a cohort of 34 pediatric ALL PDX samples, including 10 MLLr infant ALL. As a proof of principle, in this study we validated Venetoclax as active compound against all our subgroups of patients, but also we identified selective compounds targeting MLLr infant ALL patients.

La leucemia linfoblastica acuta che si manifesta in pazienti di età inferiore a 1 anno e con il riarrangiamento del gene MLL (MLLr infant LLA) è un tipo di leucemia rara ma molto aggressiva, associata a prognosi sfavorevole. Nonostante i miglioramenti ottenuti negli ultimi decenni nel campo dell'ematooncologia pediatrica, i neonati con LLA MLLr hanno ancora una prognosi infausta rispetto ai bambini più grandi. Ciò è dovuto principalmente alla resistenza alle terapie (es glucocorticoidi) e all'elevata incidenza di ricaduta della malattia. I meccanismi biologici coinvolti nella patogenesi e nella resistenza ai farmaci della LLA MLLr non sono completamente noti. Pertanto, è urgente identificare geni cruciali per sviluppare nuove strategie terapeutiche. A questo scopo, l'obiettivo del lavoro descritto nel capitolo 2 è stato identificare il ruolo funzionale del l'RNA binding protein Musashi-2 (MSI2) nella LLA MLLr infantile. MSI2 ha un ruolo cruciale nella proliferazione cellulare, nella differenziazione e nel mantenimento del pool di cellule staminali sia nell'ematopoiesi normale che nella leucemia. Sebbene il ruolo cruciale di MSI2 sia noto nella leucemia mieloide, nella leucemia linfoblastica cronica e nel linfoma a cellule B, riguardo la B-LLA le nostre conoscenze sono limitate. Nel nostro studio abbiamo generato una linea cellulare MLL::AF4+ LLA umana con MSI2 knock-out (SEM MSI2 KO) utilizzando la tecnologia di editing genomico CRISPR/CAS9. Abbiamo dimostrato che le cellule MSI2 KO presentano uno svantaggio proliferativo in vitro e una ridotta capacità di sviluppare la leucemia in vivo in un modello murino di xenotrapianto. Inoltre, eseguendo uno screening farmacologico high-throughput, abbiamo osservato che le cellule MSI2 KO mostrano una marcata sensibilità ai glucocorticoidi (GC) rispetto alle controllo tipicamente resistenti ai GC. Questo risultato è stato convalidato anche in campioni di PDX trattati con l’inibitore sintetico di MSI2 Ro 08-2750 e il co-trattamento Ro 08-2750 e GC ha un effetto sinergico. Approfondendo i meccanismi biologici coinvolti nella sensibilizzazione ai GC, abbiamo osservato che MSI2 è coinvolto nella regolazione del metabolismo bioenergetico delle cellule leucemiche (in particolare nella respirazione mitocondriale). Nel complesso, i nostri dati forniscono nuove informazioni sulle vulnerabilità metaboliche della leucemia e aprono la strada alla possibilità di colpire MSI2 o la respirazione mitocondriale (utilizzando inibitori di Oxphos, in combinazione con altri farmaci) come possibile strategia terapeutica. Infine, abbiamo scoperto che l'inibitore di MSI2 Ro 08-2750 agisce sinergicamente anche in combinazione con il farmaco Venetoclax (ABT-199) sia in linee cellulari in vitro che in campioni PDX ex-vivo. Nel Capitolo 3, abbiamo inibito MSI2 in campioni di pazienti primari di LLA infantile MLLr. Per raggiungere questo obiettivo, abbiamo creato un sistema di vettori lentivirali shRNA anti-MSI2. Il silenziamento di MSI2 è stato validato in una linea cellulare MLL::AF4+ e applicato a tre campioni di PDX di LLA infantile MLLr. Ulteriori studi funzionali saranno eseguiti in futuro per corroborare il ruolo di MSI2 nei pazienti con MLLr infant LLA. Infine, durante il mio dottorato di ricerca sono stata coinvolta in uno studio collaborativo volto a identificare nuovi potenziali farmaci per i pazienti LLA ad alto rischio "difficili da trattare" (capitolo 4). Le terapie attualmente utilizzate per trattare i neonati con LLA MLLr non sono in grado di migliorare la loro prognosi negativa; pertanto, è necessario identificare nuovi composti più efficaci. In questo studio abbiamo creato una piattaforma di screening farmacologico high-throughput per analizzare una coorte di 34 campioni PDX di LLA pediatriche, di cui 10 LLA MLLr infantili. Abbiamo identificato alcuni composti attivi contro tutti i sottogruppi citogenetici di LLA (es Venetoclax) e altri selettivi per la LLA infantile MLLr.

(2023). MLL rearranged infant acute lymphoblastic leukemia: unravelling the functional role of the RNA-binding protein Musashi-2 (MSI2) and identifying novel therapeutic strategies. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

MLL rearranged infant acute lymphoblastic leukemia: unravelling the functional role of the RNA-binding protein Musashi-2 (MSI2) and identifying novel therapeutic strategies

VALSECCHI, LUIGIA
2023

Abstract

Acute Lymphoblastic Leukaemia occurring in patients younger than 1 year and carrying the MLL gene rearrangement (MLLr infant ALL) is a rare but very aggressive type of leukemia associated with poor outcome. Despite the improvements achieved in the last decades in the field of pediatric hemato-oncology, infants with MLLr ALL still suffer from a dismal prognosis compared to older children. This is mainly due to therapy resistance (like Glucocorticoids) and a high incidence of disease relapse. The biological mechanisms involved in the pathogenesis and drug resistance of MLLr leukemia are not completely understood so far. Therefore, the identification of crucial and druggable genes is urgently needed to develop novel therapeutic strategies. This was the main topic of the study described in Chapter 2. Specifically, the aim of this study was to unravel the functional role of the RNA Binding Protein Musashi-2 (MSI2) in infant MLLr ALL. MSI2 is known to play a crucial role in cell proliferation, differentiation and maintenance of the stem cell pool in both normal haematopoiesis and in Leukemia. Although the crucial role of MSI2 was demonstrated in myeloid leukemia, chronic lymphoblastic leukemia and B-cell lymphoma, in the context of B-ALL our knowledge is limited. In our study we generated a human MLL::AF4+ ALL cell line with MSI2 knock-out (SEM MSI2 KO) by using the CRISPR/CAS9 genome editing technology. We demonstrated that MSI2 KO cells have a proliferation disadvantage in vitro and display an impaired leukemia-initiating capacity and a lower disease burden in vivo in a xenotransplantation mouse model. Additionally, by performing a high-throughput drug screening we observed that MSI2 KO cells show a marked sensitivity to Glucocorticoids (GCs) compared to control cells typically GC-resistant. This finding was also validated in patient-derived xenograft (PDX) samples from MLLr infant ALL patients treated with the small compound inhibitor of MSI2 Ro 08-2750, and the combination treatment with Ro 08-2750 and GCs resulted to have a synergistic effect. By further investigating the biological mechanisms possibly involved in GC resistance/sensitization, we observed that MSI2 is involved in the regulation of the bioenergetic metabolism of leukemic cells (in particular mitochondrial respiration). Overall our data provided new insight into the metabolic vulnerabilities of leukemia, and pave the way to targeting MSI2 or mitochondrial respiration (using Oxphos inhibitors, in combination with other drugs) as a possible therapeutic strategy. Finally, we found that the MSI2 inhibitor Ro 08-2750 acts synergistically also in combination with the pro-apoptotic compound, Venetoclax (ABT-199) both in cell line in vitro and in PDX samples ex-vivo. In the Chapter 3, we aimed at targeting MSI2 in MLLr infant ALL primary patient’s sample. To achieve this goal, we successfully set up a shRNA anti-MSI2 lentiviral vector system to generate PDXs with MSI2 knock-down (KD). The RNA interference of MSI2 was validated in a MLL::AF4+ cell line, and applied to three MLLr infant ALL PDX samples. Further functional studies will be the topic of future to corroborate the role of MSI2 in primary patients with MLLr infant ALL. Finally, during my PhD I was primarily involved in a collaborative study aimed at identifying novel potential drugs to target “difficult to treat” high-risk ALL patients (Chapter 4). Nowadays the current therapy used to treat infants with MLLr ALL were not able to ameliorate their poor outcome, therefore the identification of novel and more effective compounds is un unmet need. In this study we set up a high throughput drug screening platform to screen a cohort of 34 pediatric ALL PDX samples, including 10 MLLr infant ALL. As a proof of principle, in this study we validated Venetoclax as active compound against all our subgroups of patients, but also we identified selective compounds targeting MLLr infant ALL patients.
CAZZANIGA, GIOVANNI
BARDINI, MICHELA
MLL; LLA; Musashi-2; Terapia; Metabolismo
MLL; ALL; Musashi-2; Therapy; Metabolism
MED/15 - MALATTIE DEL SANGUE
English
18-apr-2023
MEDICINA TRASLAZIONALE E MOLECOLARE - DIMET
35
2021/2022
embargoed_20260418
(2023). MLL rearranged infant acute lymphoblastic leukemia: unravelling the functional role of the RNA-binding protein Musashi-2 (MSI2) and identifying novel therapeutic strategies. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_863283.pdf

embargo fino al 18/04/2026

Descrizione: Tesi di Dottorato Valsecchi Luigia
Tipologia di allegato: Doctoral thesis
Dimensione 6.31 MB
Formato Adobe PDF
6.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/412779
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact