Motor neuron diseases (MNDs) encompasses a broad spectrum of progressive neurodegenerative conditions characterized by degeneration of upper and/or lower motoneurons. The main MNDs are amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). In most cases (90%) ALS occurs in sporadic forms with unknown etiology, whereas the remaining are familial cases, 20% of which account of superoxide dismutase 1 (SOD1) gene mutations. Conversely, SMA and SBMA are exclusively genetic disorders, the former caused by survival motor neuron 1 (SMN1) gene homozygous loss or mutation; the latter is associated with a CAG repeat sequence expansion within exon 1 of the androgen receptor gene. Despite differences in disease etiology, onset, and progression, MNDs share a common skeletal muscle involvement. Mounting evidence suggests that muscle degeneration might be not only a consequence of motoneuron loss, but myocytes may be the site of crucial pathogenic events, indicating a potential pivotal role of muscle tissue in MND pathogenesis. MicroRNAs (miRNAs) are key molecules involved in a plethora of physiological and pathophysiological processes and particularly, muscle-specific miRNAs (myomiRs), including miR-1, miR133a, miR-133b, and miR-206, are critical players in myogenic pathways. The hypothesis of the current project is that myomiRs altered expression in muscle tissue may contribute to MND onset and progression. The aim of this study was to assess the expression levels of myomiRs and their target genes in muscle tissue of the MND animal models, to investigate their role in the compromised skeletal muscle environment associated to MNDs as therapeutic target and disease biomarkers. To this purpose, by qPCR we analysed the expression of myomiRs, miR-1, miR-133a, miR-133b e miR-206 and their putative target mRNAs, in G93A-SOD1, Δ7SMA, and AR133Q mouse muscle during disease progression. Target protein levels were assessed by western-blot. Further, we extended our analysis on serum samples of SOD1-ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets in ALS, SMA, and SBMA mice. In particular, we identified a miR-206 upregulation as a common pathogenic feature associated with MND muscle impairment. A similar myomiR signature was observed in patients’ sera. Our overall findings highlight the role of myomiRs as promising therapeutic molecules and biomarkers in ALS, SMA, and SBMA. Further functional investigations are needed to explore the targeting of myomiR-based drugs to skeletal muscle as novel treatment approaches.

Le malattie del motoneurone (MND) raggruppano un ampio spettro di patologie progressive neuromuscolari caratterizzate dalla degenerazione dei motoneuroni superiori e/o inferiori. Le principali malattie del motoneurone sono la sclerosi laterale amiotrofica (SLA), la atrofia muscolare spinale (SMA) e la atrofia muscolare spino-bulbare (SBMA). L’eziologia della SLA non è completamente nota. Nel 90% dei casi la SLA si presenta in maniera sporadica, mentre nel 10% dei casi è ereditaria, pertanto definita “SLA familiare”, dovuta nel 20% dei pazienti a mutazioni nel gene della superossido dismutasi 1 (SOD1). Diversamente, SMA ed SBMA sono malattie monogeniche, la prima dovuta a una perdita in omozigosi o mutazioni del gene di sopravvivenza del motoneurone 1 (SMN1); la seconda è causata da una sequenza espansa CAG nell’esone 1 del gene del recettore degli androgeni. Nonostante le differenze in termini di eziologici, di manifestazione dei sintomi e di progressione della patologia, le malattie del motoneurone presentano tutte una compromissione a livello muscolare. Numerosi studi suggeriscono che la degenerazione muscolare potrebbe non essere esclusivamente una conseguenza di un danno ai motoneuroni, ma che meccanismi patogenetici avvengano già a livello di cellula muscolare, e che quindi il muscolo possa rivestire un ruolo cruciale nella patogenesi delle malattie del motoneurone. I microRNA (miRNA), piccoli RNA non codificanti, sono principalmente attivi nella regolazione dell'espressione genica a livello trascrizionale e post-trascrizionale e sono coinvolti in una varietà di processi fisiologici e patologici. In particolare, i microRNA muscolo-specifici (myomiR), tra cui miR-1, miR-133a, miR-133b e miR-1, sono molecole chiave per la miogenesi. L’ipotesi di questo progetto è che l’alterata espressione dei myomiRs nel tessuto muscolare possa contribuire all’insorgenza o progressione delle MND. Lo scopo del presente studio è stato quello di analizzare i livelli di espressione dei myomiR e dei loro geni target nel tessuto muscolare di modelli animali di malattie del motoneurone, per indagare il loro ruolo nelle alterazioni muscolari associate a tali patologie ed identificare potenziali bersagli terapeutici e biomarcatori. Mediante real time PCR quantitativa abbiamo analizzato i livelli di espressione dei myomiR quali miR-1, miR-133a, miR-133b e miR-206 e dei loro geni target nel muscolo di topo G93A-SOD1, Δ7SMA e AR133Q durante la progressione della malattia. Mediante western-blot abbiamo anallizzato i livelli proteici dei target. Successivamente abbiamo esteso le analisi a livello di espressione dei miRNA nel siero di pazienti SLA con mutazione della SOD1, SMA ed SBMA. I nostri risultati hanno evidenziato una alterazione dei livelli dei microRNA muscolo-specifici e dei loto target nei modelli murini di SLA, SMA e SBMA. In particolare abbiamo identificato un aumento significativo dei livelli del miR-206 che risulta essere una caratteristica patogenetica comune alle malattie del motoneurone, associato all’alterazione muscolare. Un trend analogo è stato osservato nel siero dei pazienti. Complessivamente tali dati suggeriscono che i microRNA possono essere considerati potenziali bersagli terapeutici e biomarcatori per la SLA, la SMA e la SBMA. Studi futuri permetteranno di indagare il potenziale terapeutico dei microRNA muscolo specifici nell’ambito delle malattie del motoneurone.

(2023). Unraveling the involvement of muscle-specific microRNAs in motor neuron diseases: evidence from animal models and human patients. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Unraveling the involvement of muscle-specific microRNAs in motor neuron diseases: evidence from animal models and human patients

MALACARNE, CLAUDIA
2023

Abstract

Motor neuron diseases (MNDs) encompasses a broad spectrum of progressive neurodegenerative conditions characterized by degeneration of upper and/or lower motoneurons. The main MNDs are amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). In most cases (90%) ALS occurs in sporadic forms with unknown etiology, whereas the remaining are familial cases, 20% of which account of superoxide dismutase 1 (SOD1) gene mutations. Conversely, SMA and SBMA are exclusively genetic disorders, the former caused by survival motor neuron 1 (SMN1) gene homozygous loss or mutation; the latter is associated with a CAG repeat sequence expansion within exon 1 of the androgen receptor gene. Despite differences in disease etiology, onset, and progression, MNDs share a common skeletal muscle involvement. Mounting evidence suggests that muscle degeneration might be not only a consequence of motoneuron loss, but myocytes may be the site of crucial pathogenic events, indicating a potential pivotal role of muscle tissue in MND pathogenesis. MicroRNAs (miRNAs) are key molecules involved in a plethora of physiological and pathophysiological processes and particularly, muscle-specific miRNAs (myomiRs), including miR-1, miR133a, miR-133b, and miR-206, are critical players in myogenic pathways. The hypothesis of the current project is that myomiRs altered expression in muscle tissue may contribute to MND onset and progression. The aim of this study was to assess the expression levels of myomiRs and their target genes in muscle tissue of the MND animal models, to investigate their role in the compromised skeletal muscle environment associated to MNDs as therapeutic target and disease biomarkers. To this purpose, by qPCR we analysed the expression of myomiRs, miR-1, miR-133a, miR-133b e miR-206 and their putative target mRNAs, in G93A-SOD1, Δ7SMA, and AR133Q mouse muscle during disease progression. Target protein levels were assessed by western-blot. Further, we extended our analysis on serum samples of SOD1-ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets in ALS, SMA, and SBMA mice. In particular, we identified a miR-206 upregulation as a common pathogenic feature associated with MND muscle impairment. A similar myomiR signature was observed in patients’ sera. Our overall findings highlight the role of myomiRs as promising therapeutic molecules and biomarkers in ALS, SMA, and SBMA. Further functional investigations are needed to explore the targeting of myomiR-based drugs to skeletal muscle as novel treatment approaches.
MANTEGAZZA, RENATO
microrna; MND; muscolo scheletrico; modelli animali; siero di pazienti
microrna; MND; skeletal muscle; animal models; patients' serum
BIO/11 - BIOLOGIA MOLECOLARE
English
20-apr-2023
NEUROSCIENZE
35
2021/2022
open
(2023). Unraveling the involvement of muscle-specific microRNAs in motor neuron diseases: evidence from animal models and human patients. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_752635.pdf

accesso aperto

Descrizione: Malacarne Claudia - 752635
Tipologia di allegato: Doctoral thesis
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/412742
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact