Gene therapy success in cancer treatment relies not only on a good molecular strategy but also on the need of a safe, efficient, and target-selective gene delivery system. Despite the great clinical success of lipid nanoparticles (LNPs) as non-viral gene therapy vectors, they suffer from lack of tumor targeting capability, which is a prerequisite for effective and selective cancer therapy. In this regard, the cell membrane coating technology is becoming a prospective tool for targeting specific cells. This top-down approach makes use of cell membrane–derived vesicles to camouflage nanoparticles as “self” and bestow them with inherent capabilities of source cells. Specifically, the coating with cancer cell membranes has been widely investigated for the selective tumor targeting, owing to the homotypic self-recognition ability of cancer cells. In this project, the natural composition of the tumor cell membranes is instead explored to achieve a heterotypic targeting, relying on the intrinsic interaction of cancer cells with heterotypic cells in tumor microenvironment (TME). In this thesis, we focused our attention on desmoplastic cancers, which exhibit hardly accessible tumor stroma. Herein, rather than acting directly on hardly accessible cancer cells, we reasoned that it could be more convenient to develop an innovative gene therapy vector suitable to deliver RNA-based anticancer agents specifically to the more accessible cancer associated fibroblasts (CAFs). After the establishment of a CAF cellular model, a systematic biochemical characterization of the peculiar features of CAFs was accomplished, including the metabolic phenotype profile disclosure and identification of selective biomarker expression (i.e., α-SMA). Next, I focused on the fabrication of a core-shell system, whereby siRNA encapsulating LNPs (core) were wrapped by cancer cell membrane derived nano-vesicles (CCM-NVs) (shell). First, I developed a reproducible protocol for the production of labeled CCM-NVs derived from murine 4T1 cancer cells. CCM-NVs were characterized in terms of size, surface charge, protein content, membrane sidedness and fluorescent properties, and their ability of heterotypic interaction with CAFs was tested in vitro. Secondly, during my internship by the Prof. Dan Peer’s laboratory in Tel Aviv (Israel), I optimized a protocol for the production of Cy5-labeled siRNA-encapsulating LNPs by means of microfluidic technology. Together with LNPs physicochemical characterization, the high RNA encapsulation efficiency was confirmed. Finally, I developed a protocol for LNPs coating with CCM-NVs whereby the two components were first mixed at optimized ratios and subsequently subjected to sonication. Flow cytometry was selected as a characterization method for evaluating the co-localization of red and green fluorescence signals arising from LNPs and CCM-NVs, respectively. The appearance of a double positive population identified after sonication suggested that a physical association of the two components occurred but was not sufficient to prove the actual incorporation of LNPs into the CCM-NVs leading to a core-shell structure. Future expansion of the present work will involve additional characterization experiments to fully disclose the structural features of the semisynthetic nanovesicles.

Il successo della terapia genica nel trattamento dei tumori è dovuto, non solo a una strategia molecolare mirata, ma anche alla disponibilità di un efficiente sistema di veicolazione che sia selettivo e non tossico. Nonostante il grande successo clinico delle nanoparticelle lipidiche come vettori non virali per la terapia genica, queste non garantiscono tuttavia un trasporto selettivo al tumore, requisito essenziale per una terapia antitumorale efficace. A questo proposito, l’approccio che si basa sul rivestimento di nanoparticelle sintetiche con membrane cellulari sembra essere una potenziale soluzione per ottenere un trasporto cellula-specifico. Questo metodo consiste nell’ utilizzo di vescicole formate da membrane cellulari per “mimetizzare” nanoparticelle sintetiche come “oggetti naturali” e conferire a queste proprietà che sono tipiche delle cellule di origine. Nello specifico, l’impiego di membrane ottenute da cellule tumorali è stato scelto per effettuare un trasporto selettivo ai tumori, sfruttando la proprietà di riconoscimento omotipico cellula-cellula, caratteristica delle cellule tumorali. In questo progetto di tesi, la composizione naturale delle cellule tumorali, al contrario, è sfruttata per effettuare un’interazione eterotipica, basandosi sulla capacità intrinseca di queste di interagire con cellule eterotipiche nel microambiente tumorale. In questo lavoro ci siamo focalizzati su un modello di tumore desmoplastico, caratterizzato da uno stroma tumorale eccessivamente denso e difficoltoso da penetrare. Invece che agire direttamente sulla massa tumorale difficilmente accessibile, abbiamo scelto di sviluppare un sistema di terapia genica in grado di veicolare agenti antitumorali basati sull’ mRNA selettivamente ai fibroblasti associati al tumore (localizzati a livello perivascolare). Dopo aver definito e sviluppato un modello cellulare di fibroblasti associati al tumore adatto ai nostri studi, le caratteristiche biochimiche tipiche di queste cellule sono state analizzate, tra cui il profilo metabolico e l’espressione di un marker tipico. Successivamente, ci siamo focalizzati sullo sviluppo di un vettore di terapia genica innovativo in cui, idealmente, particelle lipidiche caricate al loro interno con siRNA sono rivestite da membrane di cellule tumorali, formando una struttura “core-shell”. Per prima cosa è stato messo a punto un protocollo riproducibile per la produzione di vescicole di membrane derivanti da cellule murine di tumore al seno (4T1). Le vescicole sono state caratterizzate per le seguenti proprietà: dimensione, carica superficiale, contenuto proteico, orientamento degli antigeni di membrane e fluorescenza. Inoltre, la capacità di interazione eterotipica delle vescicole con i fibroblasti associati ai tumori è stata valutata tramite saggi di internalizzazione in vitro. Durante il semestre svolto presso il laboratorio diretto dal Prof. Dan Peer a Tel Aviv (Israele), ho ottimizzato un protocollo per la produzione di nanoparticelle lipidiche che incapsulano siRNA, facendo uso della tecnologia microfluidica. Oltre alla caratterizzazione fisiochimica, l’efficienza di incapsulamento del materiale genetico all’interno delle nanoparticelle lipidiche è stata quantificata. Infine, abbiamo sviluppato un protocollo per il rivestimento delle particelle lipidiche con le vescicole di membrane cellulari: le due componenti sono state prima incubate secondo rapporti specifici e successivamente sonicate. La tecnica di citometria a flusso è stata selezionata per valutare la co-localizzazione dei segnali di fluorescenza rosso e verde, provenienti rispettivamente da particelle lipidiche e vescicole di membrana. La comparsa di una popolazione positiva per entrambe le fluorescenze suggerisce un’associazione fisica tra i due elementi. Esperimenti futuri comprenderanno un’analisi più approfondita delle caratteristiche strutturali del sistema di trasporto sviluppato.

(2023). Design, fabrication, and biochemical investigation of cancer cell membrane derived nano-vesicles for the development of intelligent RNA delivery systems. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Design, fabrication, and biochemical investigation of cancer cell membrane derived nano-vesicles for the development of intelligent RNA delivery systems

GARBUJO, STEFANIA
2023

Abstract

Gene therapy success in cancer treatment relies not only on a good molecular strategy but also on the need of a safe, efficient, and target-selective gene delivery system. Despite the great clinical success of lipid nanoparticles (LNPs) as non-viral gene therapy vectors, they suffer from lack of tumor targeting capability, which is a prerequisite for effective and selective cancer therapy. In this regard, the cell membrane coating technology is becoming a prospective tool for targeting specific cells. This top-down approach makes use of cell membrane–derived vesicles to camouflage nanoparticles as “self” and bestow them with inherent capabilities of source cells. Specifically, the coating with cancer cell membranes has been widely investigated for the selective tumor targeting, owing to the homotypic self-recognition ability of cancer cells. In this project, the natural composition of the tumor cell membranes is instead explored to achieve a heterotypic targeting, relying on the intrinsic interaction of cancer cells with heterotypic cells in tumor microenvironment (TME). In this thesis, we focused our attention on desmoplastic cancers, which exhibit hardly accessible tumor stroma. Herein, rather than acting directly on hardly accessible cancer cells, we reasoned that it could be more convenient to develop an innovative gene therapy vector suitable to deliver RNA-based anticancer agents specifically to the more accessible cancer associated fibroblasts (CAFs). After the establishment of a CAF cellular model, a systematic biochemical characterization of the peculiar features of CAFs was accomplished, including the metabolic phenotype profile disclosure and identification of selective biomarker expression (i.e., α-SMA). Next, I focused on the fabrication of a core-shell system, whereby siRNA encapsulating LNPs (core) were wrapped by cancer cell membrane derived nano-vesicles (CCM-NVs) (shell). First, I developed a reproducible protocol for the production of labeled CCM-NVs derived from murine 4T1 cancer cells. CCM-NVs were characterized in terms of size, surface charge, protein content, membrane sidedness and fluorescent properties, and their ability of heterotypic interaction with CAFs was tested in vitro. Secondly, during my internship by the Prof. Dan Peer’s laboratory in Tel Aviv (Israel), I optimized a protocol for the production of Cy5-labeled siRNA-encapsulating LNPs by means of microfluidic technology. Together with LNPs physicochemical characterization, the high RNA encapsulation efficiency was confirmed. Finally, I developed a protocol for LNPs coating with CCM-NVs whereby the two components were first mixed at optimized ratios and subsequently subjected to sonication. Flow cytometry was selected as a characterization method for evaluating the co-localization of red and green fluorescence signals arising from LNPs and CCM-NVs, respectively. The appearance of a double positive population identified after sonication suggested that a physical association of the two components occurred but was not sufficient to prove the actual incorporation of LNPs into the CCM-NVs leading to a core-shell structure. Future expansion of the present work will involve additional characterization experiments to fully disclose the structural features of the semisynthetic nanovesicles.
PROSPERI, DAVIDE
terapia genica; particelle lipidiche; membrane cellulari; fibroblasti; tumori desmoplastici
gene therapy; lipid nanoparticles; cell membrane; fibroblasts; desmoplastic tumors
BIO/10 - BIOCHIMICA
English
24-mar-2023
TECNOLOGIE CONVERGENTI PER I SISTEMI BIOMOLECOLARI (TeCSBi)
35
2021/2022
embargoed_20260324
(2023). Design, fabrication, and biochemical investigation of cancer cell membrane derived nano-vesicles for the development of intelligent RNA delivery systems. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_768404.pdf

embargo fino al 24/03/2026

Descrizione: Design, fabrication, and biochemical investigation of cancer cell membrane derived nano-vesicles for the development of intelligent RNA delivery systems
Tipologia di allegato: Doctoral thesis
Dimensione 6.09 MB
Formato Adobe PDF
6.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/408697
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact