Proteins lacking a stable tertiary structure are defined as intrinsically disordered proteins (IDPs). The resulting conformational plasticity gives IDPs the ability to rapidly and reversibly respond to environmental changes and to interact with multiple partners, acquiring an ordered structure upon binding or maintaining fuzzy conformations. As a consequence, IDPs are largely involved in signal transduction cascades and protein condensation phenomena (designated as liquid-liquid phase separation), which give rise to the so-called “membraneless organelles” (MLOs). MLOs include many cytoplasmatic and nuclear condensates, such as stress granules and the nucleolus, which exert crucial biological functions in the cell. IDPs maintain this interaction network primarily through electrostatic contacts, being their chains particularly enriched in cationic and anionic residues, together with prolines and glycines. Besides the net charge of the proteins, the distribution of opposite charges (or charge patterning) has emerged as a key feature dictating the overall size and condensation propensity of IDPs. A sequence parameter, k, has been introduced to quantitatively describe charge patterning in polypeptide chains. Investigating the relevance of charge patterning on IDP conformation and phase separation is the main objective of this thesis, which is organized into two sections. In the first section, the effect of charge distribution on the conformational ensemble of model IDPs was studied, in parallel assessing the influence of other sequence features such as proline content and secondary structure elements. Three model intrinsically disordered regions (IDRs), namely NTAIL, PNT4 and NFM, similarly charged yet with different proline fractions, were permutated in order to obtain from each wild-type (wt) sequence two k -variants with different distributions of charged residues: a “Low-k" variant, with a more regular alternation of oppositely charged residues than in the wt protein; a “High- k" variant with a more pronounced separation of opposite charges. The overall amino acid composition and the coordinates of uncharged residues were not altered. Conformational properties of wt and k-variants were assessed combining size-exclusion chromatography and native mass spectrometry. Experimental data confirm that charge clustering induces the remodeling of the IDP conformational ensemble, promoting chain compaction and/or increasing the spherical shape in a protein-specific manner, depending on the sequence context. In the second section, charge patterning was analyzed in relation to phase separation phenomena. The disordered N-terminal domain (hNTD) of human topoisomerase I was chosen as the model IDR for this study due the high density of its charged residues and the propensity for phase separation predicted by bioinformatic methods. It was observed that the charge pattern of NTDs follows a clear evolutionary trend, with vertebrates showing an extremely regular distribution of opposite charges, while yeasts and fungi present the strongest charge separation. Two hNTD charge permutants, named Mk-NTD and Hk-NTD, with progressive clustering of opposite charges, were recombinantly produced to assess the impact of different charge patterns on phase separation. The pH jump and the addition of RNA proved to be effective stimuli for the condensation of all model proteins. Turbidimetric and confocal microscopy analyses confirmed that hNTD undergoes phase separation through electrostatic interactions and that the increased clustering of residues with opposite charges impairs condensate morphology and sensitivity to salts and RNA. Overall, the results included in this thesis help delineate the multifaceted role of charge patterning in determining both single-chain and multiple-chain properties.
Le proteine prive di una struttura terziaria stabile sono definite proteine intrinsecamente disordinate (IDP). La risultante plasticità conformazionale conferisce alle IDP l’abilità di interagire con numerosi partner. Di conseguenza, le IDP sono coinvolte nelle cascate di trasduzione del segnale e nei fenomeni di condensazione proteica (detti separazione di fase liquido-liquido), i quali originano i cosiddetti “organelli privi di membrana” (MLO). Gli MLO includono svariati condensati citoplasmatici e nucleari che svolgono funzioni biologiche cruciali nella cellula. Le IDP mantengono il proprio network di interazioni principalmente attraverso contatti elettrostatici, essendo le loro catene particolarmente ricche di residui cationici ed anionici. La distribuzione delle cariche opposte (o patterning delle cariche) è emersa come caratteristica chiave responsabile delle dimensioni complessive e della propensione alla condensazione delle IDP. Un parametro di sequenza, k, è stato introdotto per descrivere in maniera quantitativa il patterning delle cariche nelle catene polipeptidiche. Investigare l’importanza del patterning delle cariche in relazione alla conformazione delle IDP e alla separazione di fase è l’obiettivo principale di questa tesi, che si organizza in due sezioni. Nella prima sezione, è stato studiato l’effetto della distribuzione delle cariche sull’ensemble conformazionale di IDP modello, determinando parallelamente l’influenza del contenuto di proline e degli elementi di struttura secondaria. Tre regioni intrinsecamente disordinate modello (IDR), ovvero NTAIL, PNT4 e NFM, similmente cariche ma con differente contenuto di proline, sono state permutate così da ottenere, a partire da ciascuna sequenza wild-type (wt), due varianti di k che presentano una differente distribuzione dei residui carichi: un costrutto “Low k”, che mostra un’alternanza più regolare rispetto alla proteina wt dei residui dotati di carica opposta; una variante “High k” con una separazione più pronunciata delle cariche elettriche opposte. La composizione amminoacidica complessiva e le coordinate dei residui non carichi non sono state alterate. Le proprietà conformazionali della proteina wt e delle varianti di k sono state determinate combinando la cromatografia ad esclusione molecolare e la spettrometria di massa nativa. I dati sperimentali suggeriscono che la clusterizzazione delle cariche produce il rimodellamento dell’ensemble conformazionale delle IDP, il quale promuove la compattazione della catena polipeptidica e/o l’acquisizione di una forma più sferica in maniera proteino-specifica, secondo il contesto di sequenza. Nella seconda sezione, il patterning delle cariche è stato analizzato in relazione ai fenomeni di separazione di fase. Il dominio disordinato N-terminale (hNTD) della topoisomerasi I umana è stato scelto come IDR modello a causa dell’elevata densità di residui carichi e della sua propensione alla separazione di fase predetta attraverso metodi bioinformatici. Due mutanti di carica di hNTD, Mk-NTD e Hk-NTD, caratterizzati da una progressiva clusterizzazione dei residui cationici ed anionici, sono stati prodotti al fine di verificare l’impatto del patterning delle cariche sul processo di separazione di fase. Sono stati impiegati il salto di pH e l’aggiunta di RNA come stimoli efficienti per promuovere la condensazione delle proteine modello. Le analisi di turbidimetria e microscopia confocale hanno confermato che hNTD va incontro a separazione di fase attraverso interazioni elettrostatiche e che una più spiccata clusterizzazione dei residui amminoacidici con carica opposta intacca la morfologia dei condensati e la sensibilità a sali e RNA. Complessivamente, i risultati inclusi in questa tesi di dottorato aiutano a delineare il ruolo sfaccettato della distribuzione delle cariche nel determinare sia le proprietà della singola catena che quelle multi-catena.
(2023). Compaction and condensation properties of intrinsically disordered model proteins. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
Compaction and condensation properties of intrinsically disordered model proteins
BIANCHI, GRETA
2023
Abstract
Proteins lacking a stable tertiary structure are defined as intrinsically disordered proteins (IDPs). The resulting conformational plasticity gives IDPs the ability to rapidly and reversibly respond to environmental changes and to interact with multiple partners, acquiring an ordered structure upon binding or maintaining fuzzy conformations. As a consequence, IDPs are largely involved in signal transduction cascades and protein condensation phenomena (designated as liquid-liquid phase separation), which give rise to the so-called “membraneless organelles” (MLOs). MLOs include many cytoplasmatic and nuclear condensates, such as stress granules and the nucleolus, which exert crucial biological functions in the cell. IDPs maintain this interaction network primarily through electrostatic contacts, being their chains particularly enriched in cationic and anionic residues, together with prolines and glycines. Besides the net charge of the proteins, the distribution of opposite charges (or charge patterning) has emerged as a key feature dictating the overall size and condensation propensity of IDPs. A sequence parameter, k, has been introduced to quantitatively describe charge patterning in polypeptide chains. Investigating the relevance of charge patterning on IDP conformation and phase separation is the main objective of this thesis, which is organized into two sections. In the first section, the effect of charge distribution on the conformational ensemble of model IDPs was studied, in parallel assessing the influence of other sequence features such as proline content and secondary structure elements. Three model intrinsically disordered regions (IDRs), namely NTAIL, PNT4 and NFM, similarly charged yet with different proline fractions, were permutated in order to obtain from each wild-type (wt) sequence two k -variants with different distributions of charged residues: a “Low-k" variant, with a more regular alternation of oppositely charged residues than in the wt protein; a “High- k" variant with a more pronounced separation of opposite charges. The overall amino acid composition and the coordinates of uncharged residues were not altered. Conformational properties of wt and k-variants were assessed combining size-exclusion chromatography and native mass spectrometry. Experimental data confirm that charge clustering induces the remodeling of the IDP conformational ensemble, promoting chain compaction and/or increasing the spherical shape in a protein-specific manner, depending on the sequence context. In the second section, charge patterning was analyzed in relation to phase separation phenomena. The disordered N-terminal domain (hNTD) of human topoisomerase I was chosen as the model IDR for this study due the high density of its charged residues and the propensity for phase separation predicted by bioinformatic methods. It was observed that the charge pattern of NTDs follows a clear evolutionary trend, with vertebrates showing an extremely regular distribution of opposite charges, while yeasts and fungi present the strongest charge separation. Two hNTD charge permutants, named Mk-NTD and Hk-NTD, with progressive clustering of opposite charges, were recombinantly produced to assess the impact of different charge patterns on phase separation. The pH jump and the addition of RNA proved to be effective stimuli for the condensation of all model proteins. Turbidimetric and confocal microscopy analyses confirmed that hNTD undergoes phase separation through electrostatic interactions and that the increased clustering of residues with opposite charges impairs condensate morphology and sensitivity to salts and RNA. Overall, the results included in this thesis help delineate the multifaceted role of charge patterning in determining both single-chain and multiple-chain properties.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_791906.pdf
accesso aperto
Descrizione: Compaction and condensation properties of intrinsically disordered model proteins
Tipologia di allegato:
Doctoral thesis
Dimensione
5.52 MB
Formato
Adobe PDF
|
5.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.