Bortezomib (BTZ), a first-generation proteasome inhibitor, was approved by the Food and Drug Administration (FDA) in 2003 for the treatment of multiple myeloma. At present, BTZ is frequently used for treatment of multiple myeloma and mantle cell lymphoma. However, bortezomib-induced peripheral neuropathy (BIPN) occurs in approximately 30%–40% of patients and it is characterized by sensory symptoms (hypoesthesia, paresthesias and numbness) and/or neuropathic pain. According to clinical practice guidelines released by the American Society of Clinical Oncology (ASCO) in 2014, also confirmed in 2019, there are no highly recommended therapies for the prevention or treatment of chemotherapy-induced peripheral neuropathy (CIPN), including BIPN. only one drug (duloxetine) was added to the latest guidelines released in 2020. Therefore, novel therapeutic strategies are highly desirable to prevent and manage CIPN symptoms. Nanotechnologies provide the design of small and flexible structures. In the pharmaceutical field, hosting old drugs in nanostructures allows the drugs to selectively recognize the target tissue. Silica materials are classified by FDA as “Generally Recognized as Safe (GRAS)” and they have been used, for a long time, as a food-additive and in cosmetics. Mesoporous Silica Nanoparticles (MSNs) (diameter of 50-300 nm) are very interesting in medical applications due to their no toxicity (<100microg/m), tunable pore size (2–50 nm), high surface area (700–1000 m2/g), high capacity of drug loading and gradual release, good biocompatibility, and low production costs. In this project, with the aim of increasing the efficacy and target selectivity of BTZ and consequently reducing the toxicity of BTZ (in particular BTZ neurotoxicity), FOL-MSN-BTZ designed, synthetized and characterized by the Department of Environmental Engineering University of Calabria have been investigated. FOL-MSN-BTZ have two very important characteristics: a) drug release depends on pH. This characteristic is aimed at the preferential release of BTZ in the microenvironment of tumoral cells. b) nanoparticles have been functionalized with folic acid. This characteristic is aimed to preferentially target multiple myeloma cells expressing a high amount of folic acid receptors. FOL-MSN-BTZ tumoral selectivity and uptake have been characterized in in vitro experiments. After that, the FOL-MSN-BTZ maximum concentration to be used in the subsequent efficacy experiment has been determined through an NO OBSERVABLE ADVERSE EFFECTS LEVEL (NOAEL) experiment. The antineoplastic efficacy and selectivity of FOL-MSN-BTZ have been investigated on multiple myeloma RPMI 8226 cells xenograft model in female SCID mice. Data demonstrate that FOL-MSN-BTZ allows the treatment of animals with a double dose of BTZ (2mg/kg) compared to the dose administered with free BTZ (1mg/kg). Moreover, study of biodistribution demonstrates that FOL-MSN-BTZ permits the release of BTZ preferentially in tumor tissue with respect to no target organ as lung. Unfortunately, with the tested schedule (FOL-MSN-BTZ 2mg/kg once a week for 5 weeks) the main goal of nanoparticles, that is to reduce the neurotoxic effect of BTZ, has not been achieved. In fact, both neurophysiological and morphological analysis demonstrate a neurotoxic effect of the tested schedule of treatment. In order to overcome neurotoxicity a new treatment schedule has been designed and planned. In particular, an efficacy experiment on multiple myeloma RPMI 8226 cells xenograft model in female SCID mice is currently underway. The new schedule (FOL-MSN-BTZ 1.5mg/kg twice a week for 5 weeks) well tolerated in the NOAEL experiment and specifically designed to reduce the single dose treatment, administering in any case a higher total dose of BTZ than that which can be administered with free BTZ, is under investigation.

Bortezomib (BTZ), è un inibitore del proteasoma, approvato nel 2003 dalla Food and Drug Administration per il trattamento del mieloma multiplo. Attualmente, BTZ è utilizzato per il trattamento del mieloma multiplo e del linfoma mantellare. Tuttavia, la neuropatia periferica indotta da BTZ (BIPN) si verifica in circa il 30-40% dei pazienti ed è caratterizzata da sintomi sensoriali e dolore neuropatico (BIPN). Secondo le linee guida pubblicate nel 2014 e confermate nel 2019 dall&#39;American Society of Clinical Oncology, non esistono terapie altamente raccomandate per la prevenzione o il trattamento della neuropatia periferica indotta da chemioterapici (CIPN). Solo il farmaco duloxetina è stato raccomandato nel 2020. Grazie alle nanotecnologie è possibile la progettazione di particelle di piccole dimensioni e versatili. In campo farmaceutico, le nanostrutture caricate con farmaci sono più selettive verso il tessuto bersaglio. I materiali in silice sono classificati dalla FDA come “Generally Recognized as Safe” e sono stati utilizzati come additivo alimentare e nei cosmetici. Le nanoparticelle di silice mesoporosa (MSN) (diametro di 50-300 nm) sono importanti nelle applicazioni mediche perché hanno caratteristiche molto interessanti: assenza di tossicità (&lt;100 microg/m2), dimensione dei pori regolabile (2–50 nm), elevata superficie (700–1000 m2/g), elevata capacità di caricamento e rilascio graduale del farmaco, buona biocompatibilità e bassi costi di produzione. In questo progetto, con l&#39;obiettivo di aumentare l&#39;efficacia e la selettività del BTZ per il mieloma multiplo e di conseguenza ridurre la tossicità del BTZ (in particolare la neurotossicità), nanoparticelle FOL-MSN-BTZ sintetizzate dal Dipartimento di Ingegneria Ambientale dell’Università della Calabria sono state indagate. Le nanoparticelle FOL-MSN-BTZ hanno due caratteristiche molto importanti: a) rilascio del farmaco pH dipendente. Questa caratteristica è finalizzata al rilascio preferenziale di BTZ nel microambiente delle cellule tumorali. b) funzionalizzazione con acido folico. Questa caratteristica mira a colpire preferenzialmente le cellule di mieloma multiplo che esprimono un&#39;elevata quantità di recettori dell&#39;acido folico. La selettività tumorale e l&#39;assorbimento delle nanoparticelle FOL-MSN-BTZ sono state caratterizzate in esperimenti in vitro. Successivamente, la concentrazione massima del FOL-MSN-BTZ da utilizzare nel successivo esperimento di efficacia è stata determinata attraverso un esperimento NOAEL (No Observed Adverse Effect Level). L&#39;efficacia e la selettività antineoplastica delle nanoparticelle FOL-MSN-BTZ sono state studiate su un modello di xenograft di cellule RPMI 8226 di mieloma multiplo in topi SCID femmine. I dati dimostrano che le nanoparticelle FOL-MSN-BTZ consentono il trattamento di animali con una dose doppia di BTZ (2 mg/kg) rispetto alla dose somministrata con BTZ libero (1 mg/kg). Inoltre, lo studio della biodistribuzione dimostra che le nanoparticelle FOL-MSN-BTZ consentono il rilascio di BTZ preferenzialmente nel tessuto tumorale rispetto a organi off target come il polmone. Sfortunatamente, con lo schema di trattamento testato (FOL-MSN-BTZ 2mg/kg una volta a settimana per 5 settimane) non è stato raggiunto l&#39;obiettivo principale delle nanoparticelle, ovvero ridurre l&#39;effetto neurotossico del BTZ. Infatti, sia l&#39;analisi neurofisiologica che morfologica dimostrano un effetto neurotossico. Per superare la neurotossicità è stato pianificato un nuovo schema di trattamento. Il nuovo schema di trattamento (FOL-MSN-BTZ 1.5mg/kg due volte a settimana per 5 settimane) ben tollerato nell&#39;esperimento NOAEL, specificatamente ideato per ridurre la dose singola, somministrando comunque una dose totale di BTZ superiore a quella che può essere somministrato con BTZ libero, attualmente è in corso di svolgimento.

(2023). Functionalized mesoporous silica nanoparticles as a strategy to specifically deliver Bortezomib to multiple myeloma. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Functionalized mesoporous silica nanoparticles as a strategy to specifically deliver Bortezomib to multiple myeloma

HASHEMI, MARYAMSADAT
2023

Abstract

Bortezomib (BTZ), a first-generation proteasome inhibitor, was approved by the Food and Drug Administration (FDA) in 2003 for the treatment of multiple myeloma. At present, BTZ is frequently used for treatment of multiple myeloma and mantle cell lymphoma. However, bortezomib-induced peripheral neuropathy (BIPN) occurs in approximately 30%–40% of patients and it is characterized by sensory symptoms (hypoesthesia, paresthesias and numbness) and/or neuropathic pain. According to clinical practice guidelines released by the American Society of Clinical Oncology (ASCO) in 2014, also confirmed in 2019, there are no highly recommended therapies for the prevention or treatment of chemotherapy-induced peripheral neuropathy (CIPN), including BIPN. only one drug (duloxetine) was added to the latest guidelines released in 2020. Therefore, novel therapeutic strategies are highly desirable to prevent and manage CIPN symptoms. Nanotechnologies provide the design of small and flexible structures. In the pharmaceutical field, hosting old drugs in nanostructures allows the drugs to selectively recognize the target tissue. Silica materials are classified by FDA as “Generally Recognized as Safe (GRAS)” and they have been used, for a long time, as a food-additive and in cosmetics. Mesoporous Silica Nanoparticles (MSNs) (diameter of 50-300 nm) are very interesting in medical applications due to their no toxicity (<100microg/m), tunable pore size (2–50 nm), high surface area (700–1000 m2/g), high capacity of drug loading and gradual release, good biocompatibility, and low production costs. In this project, with the aim of increasing the efficacy and target selectivity of BTZ and consequently reducing the toxicity of BTZ (in particular BTZ neurotoxicity), FOL-MSN-BTZ designed, synthetized and characterized by the Department of Environmental Engineering University of Calabria have been investigated. FOL-MSN-BTZ have two very important characteristics: a) drug release depends on pH. This characteristic is aimed at the preferential release of BTZ in the microenvironment of tumoral cells. b) nanoparticles have been functionalized with folic acid. This characteristic is aimed to preferentially target multiple myeloma cells expressing a high amount of folic acid receptors. FOL-MSN-BTZ tumoral selectivity and uptake have been characterized in in vitro experiments. After that, the FOL-MSN-BTZ maximum concentration to be used in the subsequent efficacy experiment has been determined through an NO OBSERVABLE ADVERSE EFFECTS LEVEL (NOAEL) experiment. The antineoplastic efficacy and selectivity of FOL-MSN-BTZ have been investigated on multiple myeloma RPMI 8226 cells xenograft model in female SCID mice. Data demonstrate that FOL-MSN-BTZ allows the treatment of animals with a double dose of BTZ (2mg/kg) compared to the dose administered with free BTZ (1mg/kg). Moreover, study of biodistribution demonstrates that FOL-MSN-BTZ permits the release of BTZ preferentially in tumor tissue with respect to no target organ as lung. Unfortunately, with the tested schedule (FOL-MSN-BTZ 2mg/kg once a week for 5 weeks) the main goal of nanoparticles, that is to reduce the neurotoxic effect of BTZ, has not been achieved. In fact, both neurophysiological and morphological analysis demonstrate a neurotoxic effect of the tested schedule of treatment. In order to overcome neurotoxicity a new treatment schedule has been designed and planned. In particular, an efficacy experiment on multiple myeloma RPMI 8226 cells xenograft model in female SCID mice is currently underway. The new schedule (FOL-MSN-BTZ 1.5mg/kg twice a week for 5 weeks) well tolerated in the NOAEL experiment and specifically designed to reduce the single dose treatment, administering in any case a higher total dose of BTZ than that which can be administered with free BTZ, is under investigation.
NICOLINI, GABRIELLA
Bortezomib; peripheral neuropath; Drug Delivery; Nanoparticles; xenograft
Bortezomib; peripheral neuropath; Drug Delivery; Nanoparticles; xenograft
BIO/17 - ISTOLOGIA
English
24-gen-2023
NEUROSCIENZE
35
2021/2022
embargoed_20260124
(2023). Functionalized mesoporous silica nanoparticles as a strategy to specifically deliver Bortezomib to multiple myeloma. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_862832.pdf

embargo fino al 24/01/2026

Descrizione: Functionalized mesoporous silica nanoparticles as a strategy to specifically deliver Bortezomib to multiple myeloma
Tipologia di allegato: Doctoral thesis
Dimensione 11.37 MB
Formato Adobe PDF
11.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/404303
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact