Glycans are chain-like structures of many monosaccharides which create the carbohydrate portion of glycoconjugates such as a glycoproteins, glycolipids, or proteoglycans, and are involved in many physiological functions. Glycans exposed on the surface of pathogens (pathogen-associated molecular patterns, PAMPs) are recognized by the lectin pathway of the complement system, one of the key components of innate immune system, through carbohydrate-binding lectins, such as mannose binding lectin (MBL) or ficolins. Experimental and clinical evidences indicate that MBL also drives secondary pathogenic thrombo-inflammation on the ischemic vasculature. MBL-mediated pathogenesis is initiated by its binding to the sugar moieties exposed on endothelial cell membranes after brain ischemia (damage-associated molecular patterns, DAMPs), e.g. induced by stroke. Stroke is a major cause of disabilities and death worldwide and occurs by blockage or rupture of a brain artery (ischemic or hemorrhagic stroke), with lack of oxygen supply to brain tissues and sudden death of brain cells. Ischemic stroke is the most common type, i.e. 88% of all the cases. Pathological events on the ischemic vessels include the activation of coagulation, contact/kinin, and complement cascades. However, despite recent substantial progress in prevention and management, stroke still remains a large unmet medical need. Therefore, novel therapeutic strategies are needed and MBL inhibitors have been proposed as potential neuroprotective agents. The main goal of this thesis was to identify potential MBL inhibitors, by developing and exploiting a robust pipeline of preclinical studies. At first, an in vitro Surface Plasmon Resonance (SPR)-based assay was developed to identify MBL ligands/inhibitors and determine their affinities for MBL. The novel assay was extensively characterized and proved to be reliable and convenient. The results obtained with different ligands (e.g. monomeric mannose, a new glycan carrying nine mannose residues and mannose-coated gold nanoparticles (Man-GNPs)) confirmed that multivalency markedly increases the affinity. Accordingly, Man-GNPs were selected as the best MBL-binding ligand for the following studies, which were carried out in a cell model mimicking the ischemic injury. i.e. immortalized human brain vascular endothelial cells (i-hBMECs) subjected to hypoxia and re-oxygenated in the presence of MBL. At first, a novel Quartz Crystal Microbalance (QCM)-based biosensor assay was developed which showed that mannose and N-acetylglucosamine —i.e. target sugars of MBL— are actually overexpressed by cells following hypoxic conditions. Consistently, it was observed that deposition of MBL on the cell surface is increased by hypoxia and this effect is counteracted by Man-GNPs, at non- toxic concentrations (20 ug/mL). Further studies showed that hypoxic cells overexpress inflammatory genes, in particular ICAM-1, in a MBL-dependent manner and this effect was prevented by Man-GNPs. These results prompted to test Man-GNPs in vivo, in mice expressing human MBL (hMBL KI) and subjected to transient cerebral arterial occlusion, to have a mice model of stroke. The administration of Man-GNPs to these mice did not result in toxic effects but also did not protect from the MBL-dependent stroke effects. In conclusion, the work described in this thesis provides a full and robust pipeline for the preclinical studies of MBL inhibitors, with potential anti-stroke activities. Among MBL inhibitors, Man-GNPs were identified in vitro as the most promising one, and cell studies confirmed their ability to prevent MBL targeting to hypoxia-induced DAMPs, and the following inflammatory profile. However, the initial studies did not confirm efficacy in vivo, possibly for pharmacokinetic reasons which need to be further clarified.

I glicani sono strutture composte da diversi monosaccaridi che formano la porzione di carboidrati tipica delle glicoproteine, dei glicolipidi o dei proteoglicani e sono coinvolti in diverse funzioni fisiologiche. I glicani che sono esposti sulla superficie dei patogeni (pathogen-associated molecular patterns, PAMP) rappresentano un segnale riconosciuto dalle lectine del sistema del complemento, una componente importante del sistema immunitario, tra cui ci sono le ficoline e mannose-binding lectin (MBL). Studi condotti in modelli sperimentali di ictus ischemico e studi clinici nei pazienti hanno dimostrato che MBL contribuisce al danno cerebrale endoteliale attivando cascate di tipo trombo-infiammatorio. Il riconoscimento di segnali di danno (damage-associated molecular patterns, DAMP) esposti sulle cellule endoteliali ischemiche è l’evento che scatena queste cascate tossiche. L’ictus è una delle maggiori cause di mortalità e disabilità permanente nel mondo e dipende dalla rottura (ictus emorragico) o dall’occlusione (ictus ischemico) di un vaso cerebrale. L’ictus ischemico rappresenta il tipo più frequente e si verifica in circa 88% dei casi. Nonostante alcuni progressi nella cura, come l’introduzione della trombectomia meccanica, e nella prevenzione, la patologia rimane un problema medico irrisolto. Sarebbe quindi auspicabile l’identificazione di nuovi target terapeutici. In questo contesto MBL rappresenta un potenziale bersaglio farmacologico. L’obiettivo principale di questa tesi è stato di identificare potenziali inibitori di MBL sviluppando ed utilizzando una robusta sequenza di test in vitro e in vivo. Inizialmente abbiamo utilizzato un approccio in vitro mettendo a punto un saggio con Surface Plasmon Resonance (SPR) che ci ha permesso di identificare i ligandi zuccherini con miglior affinità di legame a MBL. Abbiamo dimostrato che l’aumento della multivalenza dei leganti disponibili, ottenuta avvalendoci di nanoparticelle d’oro funzionalizzate con residui di mannosio (Man-GNP), permette un’efficace targeting di MBL in vitro. Abbiamo quindi utilizzato cellule immortalizzate in coltura derivate da microvasi cerebrali umani (ihBMEC), dimostrando, con tecnica Quartz Crystal Microbalance (QCM), che le glicoproteine esposte sulla loro superficie cambiano se sottoposte ad uno stimolo ipossico, aumentando l’esposizione di residui di mannosio, il target principale di MBL. Abbiamo osservato che le ihBMEC ipossiche trattate con 20 μg/mL di Man-GNP hanno ridotto il loro profilo infiammatorio, con particolare riferimento all’espressione di ICAM-1 e MMP-2, due marcatori infiammatori vascolari. Questo effetto è stato accompagnato dalla riduzione della deposizione di MBL sulla superficie vascolare. Nell’ultima parte del progetto abbiamo testato l’efficacia del trattamento con Man-GNP in un modello murino di ictus ischemico, sfruttando un ceppo animale umanizzato, quindi deleto per le due isoforme murine di MBL e knock-in per quella umana. Il trattamento, quando confrontato con quello con GNP coniugate al glucosio, che non legano MBL, non ha però dimostrato un effetto neuroprotettivo sui deficit sensorimotori dopo ischemia. In ogni caso la somministrazione sistemica delle Man-GNP si è dimostrata sicura e futuri esperimenti permetteranno di definire una strategia di trattamento migliore, volta ad aumentare la biodisponibilità della molecola. In conclusione, questa tesi ha descritto una pipeline sperimentale per screenare diverse molecole con il potenziale di agire come inibitori di MBL, partendo da un approccio in vitro su chip (SPR), fino ad approcci in vitro su modelli cellulari ed in vivo su modelli animali di patologia. Gli studi in vitro indicano che le Man-GNP inibiscono MBL, ma la loro efficacia in vivo resta da dimostrare.

(2023). Glycan-coated nanoparticles as inhibitors of specific lectins, a new neuroprotective therapeutic strategy for brain injury caused by ischemia. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Glycan-coated nanoparticles as inhibitors of specific lectins, a new neuroprotective therapeutic strategy for brain injury caused by ischemia

EROL, GIZEM
2023

Abstract

Glycans are chain-like structures of many monosaccharides which create the carbohydrate portion of glycoconjugates such as a glycoproteins, glycolipids, or proteoglycans, and are involved in many physiological functions. Glycans exposed on the surface of pathogens (pathogen-associated molecular patterns, PAMPs) are recognized by the lectin pathway of the complement system, one of the key components of innate immune system, through carbohydrate-binding lectins, such as mannose binding lectin (MBL) or ficolins. Experimental and clinical evidences indicate that MBL also drives secondary pathogenic thrombo-inflammation on the ischemic vasculature. MBL-mediated pathogenesis is initiated by its binding to the sugar moieties exposed on endothelial cell membranes after brain ischemia (damage-associated molecular patterns, DAMPs), e.g. induced by stroke. Stroke is a major cause of disabilities and death worldwide and occurs by blockage or rupture of a brain artery (ischemic or hemorrhagic stroke), with lack of oxygen supply to brain tissues and sudden death of brain cells. Ischemic stroke is the most common type, i.e. 88% of all the cases. Pathological events on the ischemic vessels include the activation of coagulation, contact/kinin, and complement cascades. However, despite recent substantial progress in prevention and management, stroke still remains a large unmet medical need. Therefore, novel therapeutic strategies are needed and MBL inhibitors have been proposed as potential neuroprotective agents. The main goal of this thesis was to identify potential MBL inhibitors, by developing and exploiting a robust pipeline of preclinical studies. At first, an in vitro Surface Plasmon Resonance (SPR)-based assay was developed to identify MBL ligands/inhibitors and determine their affinities for MBL. The novel assay was extensively characterized and proved to be reliable and convenient. The results obtained with different ligands (e.g. monomeric mannose, a new glycan carrying nine mannose residues and mannose-coated gold nanoparticles (Man-GNPs)) confirmed that multivalency markedly increases the affinity. Accordingly, Man-GNPs were selected as the best MBL-binding ligand for the following studies, which were carried out in a cell model mimicking the ischemic injury. i.e. immortalized human brain vascular endothelial cells (i-hBMECs) subjected to hypoxia and re-oxygenated in the presence of MBL. At first, a novel Quartz Crystal Microbalance (QCM)-based biosensor assay was developed which showed that mannose and N-acetylglucosamine —i.e. target sugars of MBL— are actually overexpressed by cells following hypoxic conditions. Consistently, it was observed that deposition of MBL on the cell surface is increased by hypoxia and this effect is counteracted by Man-GNPs, at non- toxic concentrations (20 ug/mL). Further studies showed that hypoxic cells overexpress inflammatory genes, in particular ICAM-1, in a MBL-dependent manner and this effect was prevented by Man-GNPs. These results prompted to test Man-GNPs in vivo, in mice expressing human MBL (hMBL KI) and subjected to transient cerebral arterial occlusion, to have a mice model of stroke. The administration of Man-GNPs to these mice did not result in toxic effects but also did not protect from the MBL-dependent stroke effects. In conclusion, the work described in this thesis provides a full and robust pipeline for the preclinical studies of MBL inhibitors, with potential anti-stroke activities. Among MBL inhibitors, Man-GNPs were identified in vitro as the most promising one, and cell studies confirmed their ability to prevent MBL targeting to hypoxia-induced DAMPs, and the following inflammatory profile. However, the initial studies did not confirm efficacy in vivo, possibly for pharmacokinetic reasons which need to be further clarified.
COCO, SILVIA
GOBBI, MARCO
Lectina; Glicano; Nanoparticella; Ictus; Biosensore
Lectin; Glycan; Nanoparticle; Stroke; Biosensor
MED/09 - MEDICINA INTERNA
English
30-gen-2023
NEUROSCIENZE
34
2020/2021
open
(2023). Glycan-coated nanoparticles as inhibitors of specific lectins, a new neuroprotective therapeutic strategy for brain injury caused by ischemia. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_852063.pdf

accesso aperto

Descrizione: Glycan-coated nanoparticles as inhibitors of specific lectins, a new neuroprotective therapeutic strategy for brain injury caused by ischemia
Tipologia di allegato: Doctoral thesis
Dimensione 13.71 MB
Formato Adobe PDF
13.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/403116
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact