The production of artificial 3D biological tissues requires that specific cells are hosted by a synthetic scaffold mimicking at the best the extracellular matrix (ECM) of the tissue, containing specific bioactive signaling molecules, which play an important role in the cellular homeostasis. The more closely a 3D in vitro ECM model replicates those conditions, the more closely the cells inside will replicate the behaviours and responses of cells in vivo. Indeed, the cell microenvironment is tissue and organ specific and play a fundamental role in cell growth, cell differentiation and communication, and is involved in pathogenesis. Aim of the PhD project is the design, the synthesis, the characterization and crosslinking of biocompatible polymers employable as cell-specific matrix for the development of 3D tissue in vitro models useful for drug and new therapies validation. To this purpose chemoselective reactions have been investigated to functionalize and crosslink polymeric biomaterials in order to generate suitable “bioinks” for 3D bioprinting of artificial ECM. Considering the relevant role of glycans as signalling molecules in ECM, able to also induce pathological event, we decided to generate artificial ECMs covalently conjugated with different, properly selected glycans. In this thesis three different synthetic approaches are described to generate tissue models with different characteristics: (i) glycol-conjugate hydrogel obtained by the crosslinking of glyco-gelatins and hyaluronic acid via strain – promoted azide-alkyne cycloaddition (SPAAC); (ii) elastin – hyaluronic acid crosslinked via Michael addition reaction; (iii) alginate – gelatin hydrogel obtained by dual static-dynamic crosslinking (via HRP and boronic acid). The glycoconjugate hydrogels have been tested as colon cancer in vitro tissue model in collaboration with San Gerardo Hospital (Monza, Italy) and as gastric cancer in vitro tissue model in collaboration with i3S - Institute for Research and Innovation in Health (Porto, Portugal), in the laboratory of Prof. Celso Reis.

Lo sviluppo di tessuti biologici 3D artificiali richiede che cellule specifiche siano ospitate da uno scaffold sintetico che imita al meglio la matrice extracellulare (ECM) del tessuto, contenente specifiche molecole di segnalazione bioattive, che svolgono un ruolo importante nell'omeostasi cellulare. Più un modello ECM 3D in vitro replica queste condizioni, più le cellule all'interno replicheranno i comportamenti e i segnali delle cellule in vivo. Infatti, il microambiente cellulare è specifico per ogni organo e tessuto e svolge un ruolo fondamentale nella crescita cellulare, nel differenziamento e nella comunicazione tra cellule ed è coinvolto nella patogenesi. Lo scopo del progetto di dottorato è la progettazione, la sintesi, la caratterizzazione e la reticolazione di polimeri biocompatibili impiegabili come matrice cellula-specifica per lo sviluppo di modelli 3D tissutali in vitro utili per la validazione di farmaci e nuove terapie. A questo scopo sono state studiate reazioni chemoselettive per funzionalizzare e reticolare biomateriali polimerici al fine di generare "bioinchiostri" adatti per la biostampa 3D di ECM artificiale. Considerando il ruolo rilevante degli zuccheri come molecole di segnalazione in ECM, in grado di indurre anche eventi patologici, abbiamo deciso di generare ECM artificiali coniugati covalentemente con diversi zuccheri opportunamente selezionati. In questa tesi vengono descritti tre diversi approcci sintetici per generare modelli tissutali con caratteristiche diverse: (i) idrogel coniugato con zuccheri ottenuto dalla reticolazione di glico-gelatine e acido ialuronico strain – promoted azide-alkyne cycloaddition (SPAAC); (ii) elastina – acido ialuronico reticolato tramite la reazione di addizione di Michael; (iii) alginato – idrogel di gelatina ottenuto mediante doppia reticolazione statico-dinamica (tramite HRP e acido boronico). Gli idrogel glicoconiugati sono stati testati come modello tissutale in vitro di cancro al colon in collaborazione con l'Ospedale San Gerardo (Monza, Italia) e come modello tissutale in vitro di cancro gastrico in collaborazione con i3S - Institute for Research and Innovation in Health (Porto, Portugal), nel laboratorio del Prof. Celso Reis.

(2023). Generation of functionalised biomaterial for biomedical applications. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Generation of functionalised biomaterial for biomedical applications

CADAMURO, FRANCESCA
2023

Abstract

The production of artificial 3D biological tissues requires that specific cells are hosted by a synthetic scaffold mimicking at the best the extracellular matrix (ECM) of the tissue, containing specific bioactive signaling molecules, which play an important role in the cellular homeostasis. The more closely a 3D in vitro ECM model replicates those conditions, the more closely the cells inside will replicate the behaviours and responses of cells in vivo. Indeed, the cell microenvironment is tissue and organ specific and play a fundamental role in cell growth, cell differentiation and communication, and is involved in pathogenesis. Aim of the PhD project is the design, the synthesis, the characterization and crosslinking of biocompatible polymers employable as cell-specific matrix for the development of 3D tissue in vitro models useful for drug and new therapies validation. To this purpose chemoselective reactions have been investigated to functionalize and crosslink polymeric biomaterials in order to generate suitable “bioinks” for 3D bioprinting of artificial ECM. Considering the relevant role of glycans as signalling molecules in ECM, able to also induce pathological event, we decided to generate artificial ECMs covalently conjugated with different, properly selected glycans. In this thesis three different synthetic approaches are described to generate tissue models with different characteristics: (i) glycol-conjugate hydrogel obtained by the crosslinking of glyco-gelatins and hyaluronic acid via strain – promoted azide-alkyne cycloaddition (SPAAC); (ii) elastin – hyaluronic acid crosslinked via Michael addition reaction; (iii) alginate – gelatin hydrogel obtained by dual static-dynamic crosslinking (via HRP and boronic acid). The glycoconjugate hydrogels have been tested as colon cancer in vitro tissue model in collaboration with San Gerardo Hospital (Monza, Italy) and as gastric cancer in vitro tissue model in collaboration with i3S - Institute for Research and Innovation in Health (Porto, Portugal), in the laboratory of Prof. Celso Reis.
GRECO, CLAUDIO
RUSSO, LAURA
NICOTRA, FRANCESCO
Biomateriali; Hydrogels; ECM; 3D bioprinting; zuccheri
Biomaterials; Hydrogels; ECM; 3D bioprinting; glycans
CHIM/06 - CHIMICA ORGANICA
English
30-gen-2023
SCIENZE CHIMICHE, GEOLOGICHE E AMBIENTALI
35
2021/2022
embargoed_20260130
(2023). Generation of functionalised biomaterial for biomedical applications. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_833768.pdf

embargo fino al 30/01/2026

Descrizione: Cadamuro Francesca - 833768
Tipologia di allegato: Doctoral thesis
Dimensione 7.09 MB
Formato Adobe PDF
7.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/402442
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact