The aim of this PhD work is to expand the industrial potential of two non-conventional yeasts, Zygosaccharomyces parabailii and Kluyveromyces marxianus, by applying direct and indirect strain engineering approaches. These yeasts possess desirable characteristics. K. marxianus has broad specificity for both hexose and pentose sugars as carbon and energy source. Apart from this, its thermotolerance, fast growth and the ability to thrive at pH below 3 make it ideal for industrial use. However, the lack of tolerance of this yeast to inhibitory compounds, particularly weak organic acid produced during LCB pre-treatment, hinders its use when this biomass is used as substrates. Although the use of synthetic biology techniques has started to be employed to understand the robustness of K. marxianus and for the production of various chemicals, the mechanisms related to organic acid tolerance are yet to be deciphered. To match this goal, we used Adaptive Laboratory Evolution (ALE), an indirect strain engineering approach, alternative and often complementary to direct engineering. In chapter 2, we aimed to improve the tolerance of K. marxianus to sugar beet pulp (SBP) hydrolysate at pH 3.0 at two different temperatures, 30 oC and 40 oC. Using the ALE approach, we selected K. marxianus evolved isolates with robust phenotype compared to the parental strains, at 30 oC. Differently to K. marxianus, the hybrid yeast Z. parabailii exhibits resistance to weak organic acids (WOA) also at low pH. Understanding the mechanism involved in tolerance to WOA can be used for avoiding the growth of this yeast in food production pipelines as well as for promoting its use as a cell factory for the production of organic acids and other bio-products. In chapter 3 of this study, our aim was to understand the phenotype-genotype correlation involved in the WOA tolerance trait. Using direct engineering method we constructed and characterised single and double Z. parabailii pdr12 mutants. This study revealed that Pdr12p is involved in tolerance to acetic and butyric acids and not in tolerance towards sorbic and benzoic acids. Furthermore, analysis of the Pdr12p sequence provided insights in the amino acids differences. The pdr12 mutants were constructed by the classical tool of exploiting deletion cassettes. Advances in metabolic engineering and synthetic biology have increased the need for creating techniques such as CRISPR-Cas9 for faster and more efficient genome editing. In chapter 4 of this study our aim was to develop a CRISPR-Cas9 system for simultaneous disruption or deletion of two alleles of a gene in Z. parabailii. We evaluated the use of four different gRNA expression systems consisting of combinations of tRNAs, tRNA and ribozyme or ribozymes as self-cleaving flanking. The functionality of the gRNA systems was tested by analysing the inactivation of the ADE2 gene in the wild type strain and the most efficient gRNA system was used to successfully construct a Z. parabailii dnl4 mutant. This mutant exhibited improved homologous recombination in the deletion of both ADE2 alleles. Analysis of mutations in the gRNA target regions of both ADE2 and DNL4 genes suggested inter-allelic rearrangements between the two gene loci, as well as absence of large regions of chromosomes. Overall, this work contributes to the vast array of studies that are shedding light on yeasts biodiversity, both as a way for understanding their natural potential and as an instrument for tailoring novel cell factories.

L'obiettivo di questo lavoro di dottorato è di espandere il potenziale industriale di due lieviti non convenzionali, Zygosaccharomyces parabailii e Kluyveromyces marxianus, applicando approcci diretti e indiretti di ingegneria metabolica. Questi lieviti possiedono caratteristiche desiderabili. K. marxianus ha un'ampia specificità sia per gli zuccheri esosi che per quelli pentosi come fonte di carbonio e di energia. Oltre a questo, la termotolleranza, la rapida crescita e la capacità di crescere a pH inferiore a 3 lo rendono ideale per l'uso industriale. Tuttavia, la scarsa tolleranza agli acidi organici deboli liberati durante il pretrattamento di LCB, ne ostacola l'uso quando questa biomassa viene utilizzata come substrato. Sebbene negli ultimi anni lo sviluppo di tecniche di biologia sintetica stai facilitando lo studio e l’impiego di K. marxianus per la produzione di varie sostanze chimiche, i meccanismi relativi alla tolleranza agli acidi organici devono ancora essere decifrati. Per raggiungere questo obiettivo, abbiamo utilizzato una Adaptive Laboratory Evolution (ALE), un approccio di ingegneria indiretta dei ceppi, alternativo e spesso complementare all'ingegneria diretta. Nel capitolo 2, abbiamo mirato a migliorare la tolleranza di K. marxianus all'idrolizzato di polpa di barbabietola da zucchero (SBP) a pH 3,0 a due diverse temperature, 30 °C e 40 °C. Utilizzando l'approccio ALE, abbiamo selezionato isolati di K. marxianus evoluti con fenotipo robusto rispetto ai ceppi parentali, a 30 °C. A differenza di K. marxianus, il lievito ibrido Z. parabailii mostra resistenza agli acidi organici deboli (WOA) anche a pH bassi. La comprensione dei meccanismi coinvolti nella tolleranza a WOA può permettere di evitare la crescita di questo lievito nelle filiere di produzione alimentare, nonché promuoverne l'uso come cell factory per la produzione di acidi organici e altri bioprodotti. Nel capitolo 3 di questo studio, il nostro obiettivo era comprendere la correlazione fenotipo-genotipo coinvolta nella tolleranza a WOA, ed abbiamo concentrato l’attenzione sul trasportatore di membrana Pdr12, creando singoli e doppi mutanti.. Questo studio ha rivelato che Pdr12p è coinvolto nella tolleranza agli acidi acetico e butirrico e non nella tolleranza agli acidi sorbico e benzoico. Inoltre, l'analisi della sequenza delle due copie di Pdr12p ha fornito informazioni sulle differenze amminoacidiche. I progressi nell'ingegneria metabolica e nella biologia sintetica hanno spinto verso la necessità di sviluppare tecniche come CRISPR-Cas9 per una modifica del genoma più rapida ed efficiente. Nel capitolo 4 di questo studio il nostro obiettivo era quello di sviluppare un sistema CRISPR-Cas9 per l’inattivazione o la delezione simultanea di due alleli di un gene in Z. parabailii. Abbiamo valutato l'uso di quattro diversi sistemi di espressione di gRNA costituiti da combinazioni di tRNA, tRNA e ribozima o ribozimi come sequenze fiancheggianti di processamento. La funzionalità dei sistemi gRNA è stata testata analizzando l'inattivazione del gene ADE2 nel ceppo wild type ed è stato utilizzato il sistema gRNA più efficiente per costruire con successo un mutante Z. parabailii dnl4. Questo mutante ha mostrato ricombinazione omologa nell'eliminazione di entrambi gli alleli ADE2. L'analisi delle mutazioni nelle regioni bersaglio del gRNA di entrambi i geni ADE2 e DNL4 ha mostrato riarrangiamenti interallelici tra i due loci, nonché la perdita di estese regioni di cromosomi.

(2022). Application of direct and indirect strain engineering approaches to unlock the potential of the yeasts Zygosaccharomyces parabailii and Kluyveromyces marxianus for bio-based processes. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Application of direct and indirect strain engineering approaches to unlock the potential of the yeasts Zygosaccharomyces parabailii and Kluyveromyces marxianus for bio-based processes

JAYAPRAKASH, POOJA
2022

Abstract

The aim of this PhD work is to expand the industrial potential of two non-conventional yeasts, Zygosaccharomyces parabailii and Kluyveromyces marxianus, by applying direct and indirect strain engineering approaches. These yeasts possess desirable characteristics. K. marxianus has broad specificity for both hexose and pentose sugars as carbon and energy source. Apart from this, its thermotolerance, fast growth and the ability to thrive at pH below 3 make it ideal for industrial use. However, the lack of tolerance of this yeast to inhibitory compounds, particularly weak organic acid produced during LCB pre-treatment, hinders its use when this biomass is used as substrates. Although the use of synthetic biology techniques has started to be employed to understand the robustness of K. marxianus and for the production of various chemicals, the mechanisms related to organic acid tolerance are yet to be deciphered. To match this goal, we used Adaptive Laboratory Evolution (ALE), an indirect strain engineering approach, alternative and often complementary to direct engineering. In chapter 2, we aimed to improve the tolerance of K. marxianus to sugar beet pulp (SBP) hydrolysate at pH 3.0 at two different temperatures, 30 oC and 40 oC. Using the ALE approach, we selected K. marxianus evolved isolates with robust phenotype compared to the parental strains, at 30 oC. Differently to K. marxianus, the hybrid yeast Z. parabailii exhibits resistance to weak organic acids (WOA) also at low pH. Understanding the mechanism involved in tolerance to WOA can be used for avoiding the growth of this yeast in food production pipelines as well as for promoting its use as a cell factory for the production of organic acids and other bio-products. In chapter 3 of this study, our aim was to understand the phenotype-genotype correlation involved in the WOA tolerance trait. Using direct engineering method we constructed and characterised single and double Z. parabailii pdr12 mutants. This study revealed that Pdr12p is involved in tolerance to acetic and butyric acids and not in tolerance towards sorbic and benzoic acids. Furthermore, analysis of the Pdr12p sequence provided insights in the amino acids differences. The pdr12 mutants were constructed by the classical tool of exploiting deletion cassettes. Advances in metabolic engineering and synthetic biology have increased the need for creating techniques such as CRISPR-Cas9 for faster and more efficient genome editing. In chapter 4 of this study our aim was to develop a CRISPR-Cas9 system for simultaneous disruption or deletion of two alleles of a gene in Z. parabailii. We evaluated the use of four different gRNA expression systems consisting of combinations of tRNAs, tRNA and ribozyme or ribozymes as self-cleaving flanking. The functionality of the gRNA systems was tested by analysing the inactivation of the ADE2 gene in the wild type strain and the most efficient gRNA system was used to successfully construct a Z. parabailii dnl4 mutant. This mutant exhibited improved homologous recombination in the deletion of both ADE2 alleles. Analysis of mutations in the gRNA target regions of both ADE2 and DNL4 genes suggested inter-allelic rearrangements between the two gene loci, as well as absence of large regions of chromosomes. Overall, this work contributes to the vast array of studies that are shedding light on yeasts biodiversity, both as a way for understanding their natural potential and as an instrument for tailoring novel cell factories.
BRANDUARDI, PAOLA
Yeast; Lignocellulose; Tolerance; Z. parabailii; K. marxianus
Yeast; Lignocellulose; Tolerance; Z. parabailii; K. marxianus
CHIM/11 - CHIMICA E BIOTECNOLOGIA DELLE FERMENTAZIONI
English
12-set-2022
TECNOLOGIE CONVERGENTI PER I SISTEMI BIOMOLECOLARI (TeCSBi)
33
2019/2020
UNIVERSITY COLLEGE CORK
embargoed_20240912
(2022). Application of direct and indirect strain engineering approaches to unlock the potential of the yeasts Zygosaccharomyces parabailii and Kluyveromyces marxianus for bio-based processes. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_836891.pdf

embargo fino al 12/09/2024

Descrizione: Jayaprakash Pooja 836891
Tipologia di allegato: Doctoral thesis
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/392222
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact