Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative and fatal disease characterized by progressive cortical, bulbar and spinal motor neuron (MN) degeneration, leading to progressive muscle weakness, atrophy, paralysis and, ultimately, death. ALS can occur in two different forms: sporadic ALS (sALS) in ∼90% of individuals and familial ALS (fALS). Different genes have been associated with fALS and/or sALS; C9ORF72–SMCR8 complex subunit (C9ORF72) is the gene most commonly linked to inherited ALS, followed by TAR DNA-binding protein 43 (TARDBP), superoxide dismutase 1 (SOD1) and FUS RNA-binding protein (FUS). Such genes affect several cellular functions, including oxidative stress (SOD1), RNA metabolism (C9ORF72, TARBDP and FUS), cytoskeletal organization [e.g. tubulin alpha-4a (TUBA4A) and profilin 1 (PFN1)] and autophagy [e.g. TANK-binding kinase 1 (TBK1) and optineurin (OPTN). ALS-associated mutant genes are ubiquitously expressed, thus alterations in structure, metabolism and physiology occur in different cell types, synergistically contributing to ALS degenerative pathways. It is generally accepted that ALS is primarily caused by MN death. However, growing evidence has shown that muscle is active and plays a crucial role in the disease onset and progression. Currently, there are no effective treatments for ALS. Indeed, one of the major aims in ALS research is the development of successful therapies, by deepening the knowledge of the molecular events leading to the degeneration of both MNs and muscle tissue. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. Among non-coding RNAs, long non-coding RNA (lncRNAs) are emerging as molecular contributors to ALS pathophysiology because of their role in regulating gene expression. LncRNAs, that are 300 to thousands nucleotides long, being more similar to mRNA than microRNAs, are key MN and muscle gene expression regulators. However, the exact contribution to ALS pathogenesis is still unknown. Here, we analysed the expression levels of MALAT1, NEAT1 and HOTTIP lncRNAs, known to be involved in the development and homeostasis of the skeletal muscle, in a human induced pluripotent stem cell (hiPSC) model differentiated towards a myogenic destiny through a small molecule-based protocol, obtained from ALS patients and healthy controls. The expression of key markers of skeletal muscle development was assessed by qPCR. Further, mRNA targets of the lncRNAs were predicted in silico, and validated by qPCR. We reported a differential lncRNA and mRNA target expression pattern in ALS-mutant cultures compared to controls, particularly at the mesodermal progenitor, early myocyte and myotube stages. Specifically, through hierarchical clustering analysis we identified specific clusters of lncRNA/target gene defining ALS cell lines, suggesting that an altered expression of these molecules might contribute to the disease pathogenesis. Our findings on dysregulation of MALAT1, NEAT1, HOTTIP and their target genes in the iPSC-based ALS in vitro model provide new insights into ALS molecular basis, pointing out the possibility that altered muscle differentiation processes, depending on these lncRNAs, could eventually lead to an altered availability of muscle mass and function in the disease. Further studies in genetically defined, or not defined, ALS patients, and in other motor neuron diseases (MNDs), could help to deeply understand the synergistic effect of MALAT1, NEAT1 and HOTTIP in disease onset and/or progression, towards future development of patient-specific lncRNA-based therapeutic strategies for ALS and other MNDs.

La SLA è una malattia neurodegenerativa caratterizzata da una progressiva degenerazione dei MN, con conseguente atrofia muscolare, paralisi e morte del paziente. Esistono due forme di SLA, la forma sporadica, nel 90% dei pazienti, e la forma familiare, nel restante 10% dei casi. Diversi geni sono associati alla SLA, come C9ORF72 che è il gene più comunemente associato alla forma familiare di SLA, seguito da TARDBP, SOD1 e FUS. Questi geni influiscono su diverse funzioni cellulari, tra cui lo stress ossidativo, il metabolismo dell’RNA, l’organizzazione del citoscheletro e l’autofagia. I geni associati alla SLA sono espressi in modo ubiquitario e quindi diversi tipi cellulari possono subire alterazioni nella struttura e metabolismo e insieme contribuiscono ai pathways degenerativi della SLA. Oltre ai MN, studi recenti dimostrano che il muscolo scheletrico è coinvolto precocemente durante la patogenesi della SLA. Ad oggi non esistono cure e uno degli obiettivi della ricerca è lo sviluppo di terapie, ottenute tramite una conoscenza specifica degli eventi molecolari che portano alla degenerazione dei MN e del tessuto muscolare. La deregolazione dell’RNA ha un contributo chiave nella patogenesi della SLA. Nel campo dell’RNA non coding, i long non coding RNA (lncRNA) emergono come contribuenti alla patofisiologia della SLA. I lncRNA, lunghi dalle 300 alle centinaia di nucleotidi, sono regolatori dell’espressione di geni muscolari e neuronali, ma il loro contributo alla patogenesi della SLA è ancora ignoto. In questo lavoro abbiamo analizzato i livelli di espressione di MALAT1, NEAT1 e HOTTIP lncRNA coinvolti nello sviluppo e omeostasi del muscolo scheletrico, nel modello di cellule pluripotente indotte umane (iPSC) derivate da pazienti SLA e controlli sani, e differenziate verso un destino miogenico tramite un protocollo basato sulle small molecules. Abbiamo analizzato l’espressione di marcatori dello sviluppo del muscolo scheletrico tramite qPCR. Inoltre, abbiamo predetto in silico e poi validato gli mRNA target dei lncRNA. Abbiamo riportato un diverso pattern di espressione dei lncRNA e target mRNA nelle colture cellulari SLA, rispetto ai controlli, in particolare allo stadio di progenitore mesodermico, miociti e miotubi. Tramite un’analisi di clustering gerarchico abbiamo identificato cluster specifici di lncRNA/geni target che caratterizzano le linee SLA, il che suggerisce che un’alterata espressione di queste molecole può contribuire alla patogenesi della malattia. Le nostre scoperte sulla deregolazione di MALAT1, NEAT1 e HOTTIP e dei loro geni target offre nuovi spunti riguardo le basi molecolari della SLA, suggerendo la possibilità che un alterato sviluppo del muscolo scheletrico, dipendente da queste molecole, possa portare a un’alterazione della massa e funzionalità muscolare durante malattia. Ulteriori studi sono necessari per indagare maggiormente l’effetto sinergico di MALAT1, NEAT1 e HOTTIP sull’insorgenza e/o progressione della malattia, con lo scopo di sviluppare strategie terapeutiche contro la SLA o altre malattie del motoneurone che siano paziente specifiche, basate sui lncRNA

(2022). Revealing the involvement of MALAT1, NEAT1, HOTTIP lncRNAs in Amyotrophic Lateral Sclerosis (ALS) via an induced pluripotent stem cell (iPSC)-derived muscle cell model. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Revealing the involvement of MALAT1, NEAT1, HOTTIP lncRNAs in Amyotrophic Lateral Sclerosis (ALS) via an induced pluripotent stem cell (iPSC)-derived muscle cell model

GIAGNORIO, ELEONORA
2022

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative and fatal disease characterized by progressive cortical, bulbar and spinal motor neuron (MN) degeneration, leading to progressive muscle weakness, atrophy, paralysis and, ultimately, death. ALS can occur in two different forms: sporadic ALS (sALS) in ∼90% of individuals and familial ALS (fALS). Different genes have been associated with fALS and/or sALS; C9ORF72–SMCR8 complex subunit (C9ORF72) is the gene most commonly linked to inherited ALS, followed by TAR DNA-binding protein 43 (TARDBP), superoxide dismutase 1 (SOD1) and FUS RNA-binding protein (FUS). Such genes affect several cellular functions, including oxidative stress (SOD1), RNA metabolism (C9ORF72, TARBDP and FUS), cytoskeletal organization [e.g. tubulin alpha-4a (TUBA4A) and profilin 1 (PFN1)] and autophagy [e.g. TANK-binding kinase 1 (TBK1) and optineurin (OPTN). ALS-associated mutant genes are ubiquitously expressed, thus alterations in structure, metabolism and physiology occur in different cell types, synergistically contributing to ALS degenerative pathways. It is generally accepted that ALS is primarily caused by MN death. However, growing evidence has shown that muscle is active and plays a crucial role in the disease onset and progression. Currently, there are no effective treatments for ALS. Indeed, one of the major aims in ALS research is the development of successful therapies, by deepening the knowledge of the molecular events leading to the degeneration of both MNs and muscle tissue. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. Among non-coding RNAs, long non-coding RNA (lncRNAs) are emerging as molecular contributors to ALS pathophysiology because of their role in regulating gene expression. LncRNAs, that are 300 to thousands nucleotides long, being more similar to mRNA than microRNAs, are key MN and muscle gene expression regulators. However, the exact contribution to ALS pathogenesis is still unknown. Here, we analysed the expression levels of MALAT1, NEAT1 and HOTTIP lncRNAs, known to be involved in the development and homeostasis of the skeletal muscle, in a human induced pluripotent stem cell (hiPSC) model differentiated towards a myogenic destiny through a small molecule-based protocol, obtained from ALS patients and healthy controls. The expression of key markers of skeletal muscle development was assessed by qPCR. Further, mRNA targets of the lncRNAs were predicted in silico, and validated by qPCR. We reported a differential lncRNA and mRNA target expression pattern in ALS-mutant cultures compared to controls, particularly at the mesodermal progenitor, early myocyte and myotube stages. Specifically, through hierarchical clustering analysis we identified specific clusters of lncRNA/target gene defining ALS cell lines, suggesting that an altered expression of these molecules might contribute to the disease pathogenesis. Our findings on dysregulation of MALAT1, NEAT1, HOTTIP and their target genes in the iPSC-based ALS in vitro model provide new insights into ALS molecular basis, pointing out the possibility that altered muscle differentiation processes, depending on these lncRNAs, could eventually lead to an altered availability of muscle mass and function in the disease. Further studies in genetically defined, or not defined, ALS patients, and in other motor neuron diseases (MNDs), could help to deeply understand the synergistic effect of MALAT1, NEAT1 and HOTTIP in disease onset and/or progression, towards future development of patient-specific lncRNA-based therapeutic strategies for ALS and other MNDs.
MANTEGAZZA, RENATO
SLA; Muscolo; iPSCs; long non coding RNA; Modello di malattia
ALS; Muscle; iPSCs; long non coding RNA; Modello di malattia
MED/26 - NEUROLOGIA
English
21-giu-2022
NEUROSCIENZE
34
2020/2021
open
(2022). Revealing the involvement of MALAT1, NEAT1, HOTTIP lncRNAs in Amyotrophic Lateral Sclerosis (ALS) via an induced pluripotent stem cell (iPSC)-derived muscle cell model. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_766021.pdf

accesso aperto

Descrizione: Revealing the involvement of MALAT1, NEAT1, HOTTIP lncRNAs in Amyotrophic Lateral Sclerosis (ALS) via an induced pluripotent stem cell (iPSC)- derived muscle cell model
Tipologia di allegato: Doctoral thesis
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/385034
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact