My PhD project is focused on the development of polymeric nanoparticle-based aqueous inks for optoelectronic and electronic applications. Specifically, the aim of my research is the fabrication of sustainable active layers of organic photovoltaic (OPV) devices processable in water. This goal is reached through water-processable nanoparticle (WPNP) aqueous suspensions, prepared from semiconducting polymers as electron-donor and acceptor materials. The aqueous inks are obtained through a modified miniemulsion method, which unlike the standard process does not imply the addition of any surfactant to ensure the colloidal stability. The adapted approach involves the use of amphiphilic rod-coil block copolymers (BCPs), characterized by a rigid block (a p‐type semiconducting polymer) covalently linked to a hydrophilic flexible segment able to interact with aqueous medium, stabilizing the aqueous/non-aqueous interfaces. The amphiphilic BCPs are able to self-assemble both neat and in blend with acceptor materials, leading to the formation of nanostructures consisting of domains with dimensions suitable for the charge percolation in the resulting active layer of the organic solar cell (OSC). Primarily, low-band-gap (LBG) polymers were considered as electron donor materials to match the solar radiation absorption. Firstly, the synthesis of four different poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based amphiphilic BCPs, with a tailored segment of poly-4-vinylpiridine (P4VP) as coil, was presented. The BCPs were used in blend with the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor material to prepare WPNP aqueous inks, which were deposited to obtain the active layers. The correlation between the internal morphology and composition of the WPNPs, and the dimensions of the donor/acceptor nanodomains with the efficiency of the resulting OSCs was deeply studied. In a second time, we explored other LBG polymers endowed with a partial order to improve the effectiveness of the approach. Therefore, the synthesis and the deep characterization of a new amphiphilic BCP based on the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) as rigid donor polymer, which is stiffer and more crystalline than PCPDTBT, were described. A segment of 15 repeating units of 4VP was selected as coil. We prepared WPNPs coming from the self-assembly of the PTB7-b-P4VP blended with the [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Subsequently, the WPNPs were employed to fabricate OSCs in direct configuration, and the best gained OPV device exhibited a PCE of 0.85%, which is still very far from the benchmark, but it is higher than the efficiency of the device obtained depositing the PC71BM:PTB7-b-P4VP from halogenated solvents. Lastly, the use of surfactants in the WPNP preparation was considered, as the resulting aqueous suspensions are more stable and easier to handle and store, enhancing the industrial scale-up process. Other semiconducting polymers were selected as electron-donor materials in the active blends. Particularly, two new LBG semiconducting BDT-based polymers, and a medium band-gap one, were synthetized and characterized. These materials will be blended with fullerene and non-fullerene acceptor (NFA) materials to obtain aqueous inks that will be deposited as active layers of optoelectronic devices, similarly to previous materials.

Il mio progetto di dottorato è focalizzato sullo sviluppo di inchiostri a base acquosa costituiti da nanoparticelle (NPs) polimeriche per applicazioni optoelettroniche ed elettroniche. In particolare, lo scopo della mia ricerca è la preparazione di strati attivi di dispositivi fotovoltaici organici (OPV) sostenibili. Questo obiettivo è raggiunto attraverso sospensioni acquose di NPs processabili in acqua, preparate a partire da miscele di polimeri semiconduttori donatori e accettori di elettroni. Gli inchiostri acquosi sono stati ottenuti attraverso il metodo della miniemulsione, modificato affinché non fosse necessaria l'aggiunta di surfattanti per garantire la stabilità colloidale. L'approccio sviluppato prevede l'utilizzo di copolimeri a blocchi (BCPs) anfifilici del tipo rod-coil, caratterizzati da un blocco rigido (un polimero semiconduttore di tipo p) legato covalentemente a un segmento flessibile idrofilo in grado di interagire con il mezzo acquoso, stabilizzando le interfacce acquose/non acquose. I BCPs anfifilici sono in grado di auto-assemblarsi sia puri che in miscela con materiali accettori, portando alla formazione di nanostrutture costituite da domini con dimensioni adatte alla percolazione della carica nello strato attivo della cella solare organica (OSC). In primo luogo, come materiali elettron-donatori sono stati considerati dei polimeri low band-gap (LBG). Nella parte iniziale della tesi è descritta la sintesi di quattro BCPs basati sul polimero poli[2,6-(4,4-bis-(2-etilesil)-4H-ciclopenta[2,1-b;3,4-b']ditiofene)-alt-4,7(2,1,3-benzotiazolo)] (PCPDTBT), con un segmento di poli-4-vinilpiridina (P4VP) come coil. I BCPs sono stati utilizzati in miscela con il derivato fullerenico PC61BM come materiale elettron-accettore per ottenere inchiostri acquosi, che sono stati poi depositati per fabbricare strati attivi. In seguito, sono stati condotti diversi esperimenti per trovare la correlazione tra la morfologia interna e la composizione delle NPs con l'efficienza dei dispositivi OPV. Successivamente, sono stati studiati altri polimeri LBG dotati di un parziale grado di cristallinità, al fine di migliorare l'efficacia del metodo sviluppato. Pertanto, nella seconda parte della tesi si discute la sintesi e la caratterizzazione di un nuovo BCP anfifilico basato sul poli[[4,8-bis[(2-etilesil)ossi]benzo[1,2-b:4,5-b']ditiofene-2,6-diil][3-fluoro-2-[(2-etilesil)carbonil]tieno[3,4-b]tiofenediil]] (PTB7) come blocco rigido, che è più rigido e più cristallino del PCPDTBT. Come blocco coil è stato scelto un segmento costituito da 15 unità di 4VP. Quindi sono state preparate le NPs tramite self-assembly del PTB7-b-P4VP miscelato con il derivato fullerenico PC71BM. Le sospensioni acquose ottenute sono state impiegate per fabbricare dispositivi OPV in configurazione diretta, e la cella migliore che è stata ottenuta presenta un’efficienza pari a 0.85%, che è un valore ancora molto lontano dal benchmark, ma è comunque superiore all'efficienza del dispositivo ottenuto depositando la miscela PC71BM:PTB7-b-P4VP da solventi alogenati. Infine, è stato preso in considerazione l'uso di tensioattivi nella preparazione delle NPs, in quanto le sospensioni acquose che ne risultano sono più stabili e più facili da maneggiare e conservare, facilitando il processo di scale-up a livello industriale. In quest’ultima parte della tesi, sono stati studiati altri polimeri semiconduttori come materiali elettron-donatori. In particolare, sono stati sintetizzati e caratterizzati due nuovi polimeri semiconduttori LBG e uno a medio band-gap. Questi materiali saranno miscelati con accettori fullerenici e non per ottenere inchiostri a base acquosa che saranno depositati come strati attivi di dispositivi optoelettronici, analogamente a quanto fatto per i materiali precedenti.

(2022). Polymeric Water-Processable Nanoparticles towards sustainable organic photovoltaics. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Polymeric Water-Processable Nanoparticles towards sustainable organic photovoltaics

DITERLIZZI, MARIANNA
2022

Abstract

My PhD project is focused on the development of polymeric nanoparticle-based aqueous inks for optoelectronic and electronic applications. Specifically, the aim of my research is the fabrication of sustainable active layers of organic photovoltaic (OPV) devices processable in water. This goal is reached through water-processable nanoparticle (WPNP) aqueous suspensions, prepared from semiconducting polymers as electron-donor and acceptor materials. The aqueous inks are obtained through a modified miniemulsion method, which unlike the standard process does not imply the addition of any surfactant to ensure the colloidal stability. The adapted approach involves the use of amphiphilic rod-coil block copolymers (BCPs), characterized by a rigid block (a p‐type semiconducting polymer) covalently linked to a hydrophilic flexible segment able to interact with aqueous medium, stabilizing the aqueous/non-aqueous interfaces. The amphiphilic BCPs are able to self-assemble both neat and in blend with acceptor materials, leading to the formation of nanostructures consisting of domains with dimensions suitable for the charge percolation in the resulting active layer of the organic solar cell (OSC). Primarily, low-band-gap (LBG) polymers were considered as electron donor materials to match the solar radiation absorption. Firstly, the synthesis of four different poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based amphiphilic BCPs, with a tailored segment of poly-4-vinylpiridine (P4VP) as coil, was presented. The BCPs were used in blend with the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor material to prepare WPNP aqueous inks, which were deposited to obtain the active layers. The correlation between the internal morphology and composition of the WPNPs, and the dimensions of the donor/acceptor nanodomains with the efficiency of the resulting OSCs was deeply studied. In a second time, we explored other LBG polymers endowed with a partial order to improve the effectiveness of the approach. Therefore, the synthesis and the deep characterization of a new amphiphilic BCP based on the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) as rigid donor polymer, which is stiffer and more crystalline than PCPDTBT, were described. A segment of 15 repeating units of 4VP was selected as coil. We prepared WPNPs coming from the self-assembly of the PTB7-b-P4VP blended with the [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Subsequently, the WPNPs were employed to fabricate OSCs in direct configuration, and the best gained OPV device exhibited a PCE of 0.85%, which is still very far from the benchmark, but it is higher than the efficiency of the device obtained depositing the PC71BM:PTB7-b-P4VP from halogenated solvents. Lastly, the use of surfactants in the WPNP preparation was considered, as the resulting aqueous suspensions are more stable and easier to handle and store, enhancing the industrial scale-up process. Other semiconducting polymers were selected as electron-donor materials in the active blends. Particularly, two new LBG semiconducting BDT-based polymers, and a medium band-gap one, were synthetized and characterized. These materials will be blended with fullerene and non-fullerene acceptor (NFA) materials to obtain aqueous inks that will be deposited as active layers of optoelectronic devices, similarly to previous materials.
BEVERINA, LUCA
DESTRI, SILVIA
ZAPPIA, STEFANIA
nanoparticelle; miniemulsione; copolimeri a blocchi; OPV; nanodomini
nanoparticles; miniemulsion; block copolymers; OPV; nanodomini
FIS/03 - FISICA DELLA MATERIA
English
18-mag-2022
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
34
2020/2021
open
(2022). Polymeric Water-Processable Nanoparticles towards sustainable organic photovoltaics. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_768261.pdf

accesso aperto

Descrizione: Polymeric Water-Processable Nanoparticles towards sustainable organic photovoltaics
Tipologia di allegato: Doctoral thesis
Dimensione 8.53 MB
Formato Adobe PDF
8.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/376407
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact