The present thesis is focused on the computational treatment of transition metal oxides and classical semiconductors. The interest in these materials is due to their electronic, optical, and magnetic properties, and their wide range of applications in catalysis, electronic devices, and photo-and electro-catalysis. One of the fundamental properties of these materials is the band gap, which determines the optical, electrical, and chemical properties. From a theoretical perspective, the most widely employed methodology to describe the band gap of these materials is the Density Functional Theory (DFT). The estimation of the band gap by DFT with the GGA approach or hybrid functionals is justified for materials that are not highly correlated such as TiO2, ZnO, V2O5, III-V semiconductors, etc. However, when one deals with highly correlated materials, it is necessary to introduce methods that include many-body effects (electron hopping), such as the GW, and the dynamical mean-field theory (DMFT). In order to solve the problem of the description of highly correlated materials, we started this thesis with the study of transition metal oxides with Mott Hubbard character by using the Charge Transition Level approach (CTLs). From this research, it was found that CTLs approach provides a better description of the band gap of highly correlated materials than those obtained with hybrid functionals and high level of theory methods such as GW and DMFT, where the computed values are compared with experimental measurements. Next, the description and rationalization of the role of quantum confinement on III-V semiconductors through the consideration of (110) surfaces with different thicknesses was studied. The results from quantum confinement indicate that there are two groups of semiconductors, the first one corresponds to semiconductors that are less affected such as the Al-V group, and the second one to semiconductors that are strongly affected such as the In-V group. Then we moved to the computational treatment of composite materials for photocatalytic applications such as the heterojunctions. In a dedicated chapter, some methodological aspects that need to be considered in the design of binary and ternary heterojunctions were provided. In particular, the description of type-II heterojunctions is given since these kinds of interfaces are the most interesting for photocatalysis applications. In this last chapter of the thesis two cases of co-catalysts are described, both based on single atoms catalysts (SACs) for the hydrogen evolution reaction (HER). First, the effect of different gold nanoparticles size (Single atoms, Nanoclusters, and Nanoparticles) supported on nitrogen-doped graphene is discussed. Second, the formation of two intermediates (MH and HMH) in transition metal oxides adsorbed on different nitrogen-doped graphene supports and molybdenum disulfide (MoS2) is described. 

La presente tesi è centrata sul trattamento computazionale di ossidi di metalli di transizione e semiconduttori classici. L'interesse per questi materiali è dovuto alle loro proprietà elettroniche, ottiche e magnetiche e alla loro vasta gamma di applicazioni nella catalisi, nei dispositivi elettronici e nella foto ed elettrocatalisi. Una delle proprietà fondamentali di questi materiali è il gap di banda, che determina le proprietà ottiche, elettriche e chimiche. Da un punto di vista teorico, la metodologia più utilizzata per descrivere il gap di banda di questi materiali è la teoria funzionale della densità (DFT). La stima del gap di banda mediante DFT con l'approccio GGA o funzionali ibridi è giustificata per materiali non altamente correlati come semiconduttori TiO2, ZnO, V2O5, III-V, ecc. Tuttavia, quando si tratta di materiali altamente correlati, si è necessario introdurre metodi che includano effetti a molti corpi (saltellamento di elettroni), come il GW, e la teoria dinamica del campo medio (DMFT). Per risolvere il problema della descrizione di materiali altamente correlati, abbiamo iniziato questa tesi con lo studio degli ossidi di metalli di transizione con carattere di Mott Hubbard utilizzando l'approccio Charge Transition Level (CTL). Da questa ricerca, è emerso che l'approccio CTL fornisce una migliore descrizione del gap di banda di materiali altamente correlati rispetto a quelli ottenuti con funzionali ibridi e metodi teorici di alto livello come GW e DMFT, in cui i valori calcolati vengono confrontati con misurazioni sperimentali. Successivamente, è stata studiata la descrizione e la razionalizzazione del ruolo del confinamento quantistico sui semiconduttori III-V attraverso la considerazione di (110) superfici con spessori diversi. I risultati del confinamento quantistico indicano che esistono due gruppi di semiconduttori, il primo corrisponde ai semiconduttori meno colpiti come il gruppo Al-V e il secondo ai semiconduttori fortemente interessati come il gruppo In-V. Poi siamo passati al trattamento computazionale dei materiali compositi per applicazioni fotocatalitiche come le eterogiunzioni. In un capitolo dedicato sono stati forniti alcuni aspetti metodologici che devono essere considerati nella progettazione di eterogiunzioni binarie e ternarie. In particolare, viene fornita la descrizione delle eterogiunzioni di tipo II poiché questi tipi di interfacce sono le più interessanti per le applicazioni di fotocatalisi. In questo ultimo capitolo della tesi vengono descritti due casi di co-catalizzatori, entrambi basati su catalizzatori ad atomi singoli (SAC) per la reazione di evoluzione dell'idrogeno (HER). In primo luogo, viene discusso l'effetto delle diverse dimensioni delle nanoparticelle d'oro (atomi singoli, nanocluster e nanoparticelle) supportate sul grafene drogato con azoto. In secondo luogo, viene descritta la formazione di due intermedi (MH e HMH) in metalli di transizione adsorbiti su diversi supporti di grafene drogati con azoto e bisolfuro di molibdeno (MoS2).

(2022). Theoretical study of semiconductor heterojunctions for photo-and electro-catalysis. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Theoretical study of semiconductor heterojunctions for photo-and electro-catalysis

CIPRIANO MARCOS, LUIS ANTONIO
2022

Abstract

La presente tesi è centrata sul trattamento computazionale di ossidi di metalli di transizione e semiconduttori classici. L'interesse per questi materiali è dovuto alle loro proprietà elettroniche, ottiche e magnetiche e alla loro vasta gamma di applicazioni nella catalisi, nei dispositivi elettronici e nella foto ed elettrocatalisi. Una delle proprietà fondamentali di questi materiali è il gap di banda, che determina le proprietà ottiche, elettriche e chimiche. Da un punto di vista teorico, la metodologia più utilizzata per descrivere il gap di banda di questi materiali è la teoria funzionale della densità (DFT). La stima del gap di banda mediante DFT con l'approccio GGA o funzionali ibridi è giustificata per materiali non altamente correlati come semiconduttori TiO2, ZnO, V2O5, III-V, ecc. Tuttavia, quando si tratta di materiali altamente correlati, si è necessario introdurre metodi che includano effetti a molti corpi (saltellamento di elettroni), come il GW, e la teoria dinamica del campo medio (DMFT). Per risolvere il problema della descrizione di materiali altamente correlati, abbiamo iniziato questa tesi con lo studio degli ossidi di metalli di transizione con carattere di Mott Hubbard utilizzando l'approccio Charge Transition Level (CTL). Da questa ricerca, è emerso che l'approccio CTL fornisce una migliore descrizione del gap di banda di materiali altamente correlati rispetto a quelli ottenuti con funzionali ibridi e metodi teorici di alto livello come GW e DMFT, in cui i valori calcolati vengono confrontati con misurazioni sperimentali. Successivamente, è stata studiata la descrizione e la razionalizzazione del ruolo del confinamento quantistico sui semiconduttori III-V attraverso la considerazione di (110) superfici con spessori diversi. I risultati del confinamento quantistico indicano che esistono due gruppi di semiconduttori, il primo corrisponde ai semiconduttori meno colpiti come il gruppo Al-V e il secondo ai semiconduttori fortemente interessati come il gruppo In-V. Poi siamo passati al trattamento computazionale dei materiali compositi per applicazioni fotocatalitiche come le eterogiunzioni. In un capitolo dedicato sono stati forniti alcuni aspetti metodologici che devono essere considerati nella progettazione di eterogiunzioni binarie e ternarie. In particolare, viene fornita la descrizione delle eterogiunzioni di tipo II poiché questi tipi di interfacce sono le più interessanti per le applicazioni di fotocatalisi. In questo ultimo capitolo della tesi vengono descritti due casi di co-catalizzatori, entrambi basati su catalizzatori ad atomi singoli (SAC) per la reazione di evoluzione dell'idrogeno (HER). In primo luogo, viene discusso l'effetto delle diverse dimensioni delle nanoparticelle d'oro (atomi singoli, nanocluster e nanoparticelle) supportate sul grafene drogato con azoto. In secondo luogo, viene descritta la formazione di due intermedi (MH e HMH) in metalli di transizione adsorbiti su diversi supporti di grafene drogati con azoto e bisolfuro di molibdeno (MoS2).
TOSONI, SERGIO PAOLO
BALLABIO, DAVIDE
PACCHIONI, GIANFRANCO
The present thesis is focused on the computational treatment of transition metal oxides and classical semiconductors. The interest in these materials is due to their electronic, optical, and magnetic properties, and their wide range of applications in catalysis, electronic devices, and photo-and electro-catalysis. One of the fundamental properties of these materials is the band gap, which determines the optical, electrical, and chemical properties. From a theoretical perspective, the most widely employed methodology to describe the band gap of these materials is the Density Functional Theory (DFT). The estimation of the band gap by DFT with the GGA approach or hybrid functionals is justified for materials that are not highly correlated such as TiO2, ZnO, V2O5, III-V semiconductors, etc. However, when one deals with highly correlated materials, it is necessary to introduce methods that include many-body effects (electron hopping), such as the GW, and the dynamical mean-field theory (DMFT). In order to solve the problem of the description of highly correlated materials, we started this thesis with the study of transition metal oxides with Mott Hubbard character by using the Charge Transition Level approach (CTLs). From this research, it was found that CTLs approach provides a better description of the band gap of highly correlated materials than those obtained with hybrid functionals and high level of theory methods such as GW and DMFT, where the computed values are compared with experimental measurements. Next, the description and rationalization of the role of quantum confinement on III-V semiconductors through the consideration of (110) surfaces with different thicknesses was studied. The results from quantum confinement indicate that there are two groups of semiconductors, the first one corresponds to semiconductors that are less affected such as the Al-V group, and the second one to semiconductors that are strongly affected such as the In-V group. Then we moved to the computational treatment of composite materials for photocatalytic applications such as the heterojunctions. In a dedicated chapter, some methodological aspects that need to be considered in the design of binary and ternary heterojunctions were provided. In particular, the description of type-II heterojunctions is given since these kinds of interfaces are the most interesting for photocatalysis applications. In this last chapter of the thesis two cases of co-catalysts are described, both based on single atoms catalysts (SACs) for the hydrogen evolution reaction (HER). First, the effect of different gold nanoparticles size (Single atoms, Nanoclusters, and Nanoparticles) supported on nitrogen-doped graphene is discussed. Second, the formation of two intermediates (MH and HMH) in transition metal oxides adsorbed on different nitrogen-doped graphene supports and molybdenum disulfide (MoS2) is described. 
Semiconduttori; Eterogiunzioni; Fotocatalisi; SACs; DFT
Semiconductors; Heterojunctions; Photocatalysis; SACs; DFT
CHIM/03 - CHIMICA GENERALE ED INORGANICA
English
SCIENZE CHIMICHE, GEOLOGICHE E AMBIENTALI
34
2020/2021
(2022). Theoretical study of semiconductor heterojunctions for photo-and electro-catalysis. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_848320.pdf

accesso aperto

Descrizione: Theoretical study of semiconductor heterojunctions for photo-and electro-catalysis
Tipologia di allegato: Doctoral thesis
Dimensione 6.55 MB
Formato Adobe PDF
6.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/374415
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact