In my PhD project, I investigated the photophysical process of photon upconversion assisted by triplet-triplet annihilation (sTTA-UC) through spectroscopy studies in a variety of systems, profoundly different on many levels. In sTTA-UC high energy radiation is emitted from the fluorescent recombination of the excited singlet of an emitter molecule, previously populated via annihilation of the metastable triplet states of two emitters. This is a sensitized process since a sensitizer is necessary to harvest the low energy incident light and to transfer the stored energy to the emitters via Dexter energy transfer. Because its functioning relies on long-lived metastable triplets, this process can be highly efficient also under low power, noncoherent light. As such, sTTA-UC is particularly suited for solar applications as it can increase the conversion efficiency by reducing transmission losses. During my studies, I focused on addressing two crucial issues that still limit the application of upconverters in solar technologies, i.e. the limited storage ability of common organic sensitizers and the poor sTTA-UC performance in solid-state upconverters, which are intrinsically better suited than liquid solutions for technological applications. To solve the first problem, I investigated hybrid sensitizers, composed of semiconductor nanostructures decorated with conjugated organic ligands characterized by broadband absorption. CdSe nanocrystals (NCs) doped with gold cations and decorated with 9-anthracene carboxylic acid demonstrated to be efficient innovative broadband hybrid sensitizers. The doping strategy inserts into the NCs energy gap localized hole-accepting states where the holes localize on the picosecond timescale, outpacing hole transfer to the ligand HOMO. With this strategy, I achieved the UC efficiency of 12%, the record performance obtained so far for hybrid upconverters. I then discussed how the CdSe nanoplatelets surface and photophysical properties make them potential optimal light harvesters. My studies on the nanoplatelets-to-ligands energy transfer dependency on the surface ligand density revealed that the surface coverage is not homogeneous but proceeds in an island-like way promoted by π- π stacking and results in the formation of ligands aggregates on the nanoplatelets surfaces, which causes a redshift of the ligand triplet energy with critical repercussions on the sTTA-UC performance and on the emitter selection. To address the second issue, I investigated two solid-state upconverters, i.e. nanostructured glassy polymers that show similar macroscopic properties but fabricated via different approaches. They both feature liquid droplets of mean size less than 50 nm where the upconverting dyes accumulate, embedded in a rigid polymer matrix that grants excellent oxygen protection and optical quality and long-term stability. The dyes confinement allows to increase the effective local excitons density resulting in an enhanced UC efficiency at low excitation intensities, thanks to the reduced intermolecular distances and the activation of the confined sTTA-UC regime. I also introduced a new perylene derivative as emitter, specifically designed to prevent molecular aggregation to maximize its fluorescence efficiency. By employing this emitter, I achieved the record UC efficiency of 42%, which directly stems from the emitter molecular structure, as it limits the formation of aggregates, while guaranteeing excellent singlet generation efficiency upon TTA. I finally presented a perspective of the performances that can be achieved by combining the two topics considered, i.e. loading broadband sensitizers in nanostructured polymers. I highlighted that if the best trade-off between nanostructure size and energy distribution is met the maximum UC efficiency can be achieved at excitation powers orders of magnitude lower that the solar irradiance, therefore promoting the development of real-world solid-state upconverters.

Durante il dottorato ho investigato il processo fotofisico di "upconversion" assistito da annichilazione tripletto-tripletto (TTA-UC) tramite studi di spettroscopia in sistemi profondamente differenti gli uni dagli altri. In TTA-UC radiazione ad alta energia è emessa dalla ricombinazione radiativa dello stato di singoletto eccitato di una molecola emettitore, popolato precedentemente dall'annichilazione dei tripletti di due emettitori. Un sensibilizzatore immagazzina la luce incidente a bassa energia e trasferisce l'eccitazione agli emettitori tramite trasferimento di energia alla Dexter. Poiché il suo funzionamento si basa su tripletti mestastabili, TTA-UC può essere altamente efficiente anche in condizioni di luce non coerente e a bassa energia. Come tale, è particolarmente adatto per dispositivi che sfruttano l'energia solare poiché è in grado di aumentarne l'efficienza di conversione limitando le perdite per trasmissione. Mi sono concentrata su due problemi importanti che tuttora limitano l'impiego di materiali che attuano TTA-UC (upconverters), ossia la limitata capacità di immagazzinare energia dei comuni sensibilizzatori organici e le scarse prestazioni di TTA-UC in upconverters a stato solido, i quali sono più adatti per applicazioni tecnologiche rispetto a sistemi liquidi. Per risolvere il primo problema ho investigato sensibilizzatori ibridi, composti da nanostrutture a semiconduttore decorate con molecole organiche, con ampio assorbimento. Nanocristalli di CdSe drogati con cationi d'oro e decorati con acido antracenico carbossilico si sono dimostrati essere sensibilizzatori ibridi efficienti ed innovativi. Il drogante introduce nel gap energetico dei nanocristalli livelli localizzati su cui le lacune si localizzano sulla scala dei picosecondi, più velocemente dell'estrazione di lacune sul livello HOMO dei leganti. Con tale strategia ho raggiunto l'efficienza di UC del 12%, record per sistemi ibridi. Ho poi mostrato come le proprietà superficiali e fotofisiche di nanoplatelets di CdSe le rendano ottimali candidati in sensibilizzatori ibridi. Ho mostrato che il ricoprimento delle superfici non è omogeneo, ma procede ad isole e l'interazione di "π- π stacking" porta alla formazione di aggregati sulle superfici delle nanoplatelets, con il risultato di ridurre l'energia dei tripletti dei leganti con profonde ripercussioni sulle prestazioni di TTA-UC e sulla scelta della specie emettitrice. Riguardo al secondo problema, ho studiato due upconverters a stato solido, polimeri vetrosi nanostrutturati che mostrano proprietà macroscopiche simili ma realizzati con tecniche differenti. Essi presentano domini liquidi di dimensione inferiore a 50 nm dove le specie che attuano TTA-UC si accumulano, racchiuse in una matrice rigida polimerica che fornisce protezione da ossigeno e qualità ottica eccellenti e stabilità a lungo termine. Il confinamento molecolare permette di aumentare la densità locale di eccitoni aumentando l'efficienza di UC a basse potenze grazie alle ridotte distanze intermolecolari e all'attivazione del regime di TTA-UC confinato.Ho inoltre studiato un nuovo emettitore derivato da perilene, realizzato con lo scopo di aumentarne l'efficienza di fluorescenza. Grazie a questo emettitore ho raggiunto l'efficienza record di UC di 42%, dovuta proprio alla struttura molecolare dell'emettitore che permette di limitare la formazione di aggregati, garantendo un'eccellente efficienza di generazione di singoletti tramite TTA. Infine, ho presentato una prospettiva riguardo alle prestazioni che possono essere raggiunte combinando le due tematiche trattate, ossia inserendo sensibilizzatori ad ampio assorbimento in polimeri nanostrutturati. Trovando il giusto compromesso tra taglia dei domini liquidi e distribuzione dell'energia di eccitazione si raggiungerebbe la massima efficienza di UC a potenze minori dell'irradianza solare, promuovendo lo sviluppo di upconverters a stato solido per tecnologie a energia solare

(2022). Hybrid and Nanostructured materials for low power photon upconversion based on triplet-triplet annihilation. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Hybrid and Nanostructured materials for low power photon upconversion based on triplet-triplet annihilation

RONCHI, ALESSANDRA
2022

Abstract

In my PhD project, I investigated the photophysical process of photon upconversion assisted by triplet-triplet annihilation (sTTA-UC) through spectroscopy studies in a variety of systems, profoundly different on many levels. In sTTA-UC high energy radiation is emitted from the fluorescent recombination of the excited singlet of an emitter molecule, previously populated via annihilation of the metastable triplet states of two emitters. This is a sensitized process since a sensitizer is necessary to harvest the low energy incident light and to transfer the stored energy to the emitters via Dexter energy transfer. Because its functioning relies on long-lived metastable triplets, this process can be highly efficient also under low power, noncoherent light. As such, sTTA-UC is particularly suited for solar applications as it can increase the conversion efficiency by reducing transmission losses. During my studies, I focused on addressing two crucial issues that still limit the application of upconverters in solar technologies, i.e. the limited storage ability of common organic sensitizers and the poor sTTA-UC performance in solid-state upconverters, which are intrinsically better suited than liquid solutions for technological applications. To solve the first problem, I investigated hybrid sensitizers, composed of semiconductor nanostructures decorated with conjugated organic ligands characterized by broadband absorption. CdSe nanocrystals (NCs) doped with gold cations and decorated with 9-anthracene carboxylic acid demonstrated to be efficient innovative broadband hybrid sensitizers. The doping strategy inserts into the NCs energy gap localized hole-accepting states where the holes localize on the picosecond timescale, outpacing hole transfer to the ligand HOMO. With this strategy, I achieved the UC efficiency of 12%, the record performance obtained so far for hybrid upconverters. I then discussed how the CdSe nanoplatelets surface and photophysical properties make them potential optimal light harvesters. My studies on the nanoplatelets-to-ligands energy transfer dependency on the surface ligand density revealed that the surface coverage is not homogeneous but proceeds in an island-like way promoted by π- π stacking and results in the formation of ligands aggregates on the nanoplatelets surfaces, which causes a redshift of the ligand triplet energy with critical repercussions on the sTTA-UC performance and on the emitter selection. To address the second issue, I investigated two solid-state upconverters, i.e. nanostructured glassy polymers that show similar macroscopic properties but fabricated via different approaches. They both feature liquid droplets of mean size less than 50 nm where the upconverting dyes accumulate, embedded in a rigid polymer matrix that grants excellent oxygen protection and optical quality and long-term stability. The dyes confinement allows to increase the effective local excitons density resulting in an enhanced UC efficiency at low excitation intensities, thanks to the reduced intermolecular distances and the activation of the confined sTTA-UC regime. I also introduced a new perylene derivative as emitter, specifically designed to prevent molecular aggregation to maximize its fluorescence efficiency. By employing this emitter, I achieved the record UC efficiency of 42%, which directly stems from the emitter molecular structure, as it limits the formation of aggregates, while guaranteeing excellent singlet generation efficiency upon TTA. I finally presented a perspective of the performances that can be achieved by combining the two topics considered, i.e. loading broadband sensitizers in nanostructured polymers. I highlighted that if the best trade-off between nanostructure size and energy distribution is met the maximum UC efficiency can be achieved at excitation powers orders of magnitude lower that the solar irradiance, therefore promoting the development of real-world solid-state upconverters.
MONGUZZI, ANGELO MARIA
MEINARDI, FRANCESCO
Tripletti; Nanocristalli; Polimeri vetrosi; Upconversion; Energia solare
Triplets; Nanocrystals; Glassy polymers; Upconversion; Energia solare
FIS/03 - FISICA DELLA MATERIA
English
28-apr-2022
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
34
2020/2021
open
(2022). Hybrid and Nanostructured materials for low power photon upconversion based on triplet-triplet annihilation. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_748053.pdf

accesso aperto

Descrizione: Tesi di Ronchi Alessandra - 748053
Tipologia di allegato: Doctoral thesis
Dimensione 18.77 MB
Formato Adobe PDF
18.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/370864
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact