During my PhD I investigated excitonic recombination mechanisms in colloidal semiconductor nanocrystals (NCs), promoting the development of new paradigms for the manipulation of optical and scintillation properties. Thanks to the wide range of spectroscopic techniques and the valuable collaborations undertaken, my conclusions have been published in prestigious scientific journals, contributing to the advancement of the community of nanomaterials scientists. My research mainly dealt with two topics of current technological importance: i) the origin of photoluminescence in NC of Cd-free ternary I-III-VI2 chalcogenides such as CuInS2 and AgInS2 ii) the use of perovskite nanostructures in detection schemes and/or energy conversion of ionizing radiation. Specifically, the use of complementary spectroscopic techniques in a controlled temperature regime has validated the presence of intrinsic sublevels, with different parity, in the valence band of the stoichiometric CuInS2 NCs responsible for the optical properties of this class of NC. My results, supported by Monte Carlo ray-tracing simulations, led to the fabrication of a luminescent solar concentrator - with record efficiency - based on CuInS2 NCs with optimal size. The study was then extended to AgInS2 NCs, a less investigates material so far, but very promising for bioimaging applications thanks to the absence of toxic elements. Then, I investigated the detection of ionizing radiation through high atomic number nanostructures such as lead halide perovskites (LHP), and in particular CsPbBr3. Through the detailed study of photo- and radio-luminescence properties, I highlighted the effects of the interaction between band edge exciton and shallow/deep defect states in CsPbBr3 nanostructures with different dimensionality. This fundamental study offered a platform to develop novel synthetic strategies to passivate trap sites on NC surfaces that led to a 500% enhancement of scintillation yield. The stability of CsPbBr3 NCs was finally verified in terms of radiation hardness, up to extreme gamma doses of 1 MGy. Furthermore, to extend their application to radiation detection with waveguiding devices, I studied the sensitization of an organic dye coupled to CsPbBr3 NCs, creating the first example of a plastic scintillator with wide Stokes-shift and fast luminescence based on LHP. To overcome the limitations imposed by the presence of Pb in LHPs, I finally explored the optical and scintillation properties of new emerging classes of green double perovskites. The information gathered encourages the continuation of this line of research, indicating surface passivation as the most promising strategy for achieving performance similar to the Pb-based counterparts.

Le mie attività di ricerca hanno indagato i meccanismi di ricombinazione eccitonici in nanocristalli semiconduttori colloidali (NC), promuovendo lo sviluppo di nuovi paradigmi per la manipolazione delle proprietà ottiche e di scintillazione. Grazie all'ampia gamma di tecniche spettroscopiche e alle preziose collaborazioni intraprese, le mie conclusioni sono state pubblicate in prestigiose riviste scientifiche, contribuendo al progresso della comunità di scienziati dei nanomateriali. La mia ricerca ha trattato principalmente due temi di attuale rilevanza tecnologica: i) l'origine della fotoluminescenza in NC di calcogenuri ternari I-III-VI2 Cd-free come CuInS2 e AgInS2 ii) l'impiego di nanostrutture di perovskiti in schemi di rivelazione e/o conversione in energia di radiazione ionizzante. Nello specifico, l’uso di tecniche spettroscopiche complementari in regime di temperatura controllata ha validato la presenza di sottolivelli intrinseci, con diversa parità, nella banda di valenza di NC stechiometrici di CuInS2 responsabili delle proprietà ottiche di questa classe di NC. I miei risultati, supportati da simulazioni di propagazione Monte Carlo, hanno portato alla fabbricazione di un concentratore solare luminescente - con efficienza record - basato su NC di CuInS2 con taglia ottimale. Lo studio è stato quindi esteso a NC di AgInS2, un materiale meno studiato ad oggi, ma molto promettente per applicazioni di bioimaging grazie all’assenza di elementi tossici. Quindi, ho investigato la rivelazione di radiazione ionizzante attraverso nanostrutture ad alto numero atomico come le perovskiti a base di alogenuri di piombo (LHP), ed in particolare il CsPbBr3. Attraverso lo studio dettagliato delle proprietà di foto- e radio-luminescenza, ho evidenziato gli effetti dell’interazione tra eccitone di bordo banda e stati di difetto shallow/deep in nanostrutture di CsPbBr3 con diversa dimensionalità. Questo studio fondamentale ha offerto una piattaforma per sviluppare nuove strategie sintetiche atte a passivare i siti di intrappolamento sulle superfici degli NC che hanno portato ad un incremento di efficienza di scintillazione del 500%. La stabilità dei NC di CsPbBr3 è stata infine verificata in termini di resistenza alla radiazione gammma fino a dosi estreme di 1 MGy. Inoltre, per estendere la loro applicazione alla radiation detection con dispositivi a guida d’onda, ho studiato la sensibilizzazione di un colorante organico accoppiato a NC di CsPbBr3, realizzando il primo esempio di scintillatore plastico con ampio Stokes-shift e luminescenza veloce basato su LHP. Per superare i limiti imposti dalla presenza di Pb nelle LHP, ho infine esplorato le proprietà ottiche e di scintillazione di nuove classi emergenti di perovskiti doppie green. Le informazioni raccolte incoraggiano il proseguimento di questa linea di ricerca indicando la passivazione superficiale come strategia più promettente per raggiungere prestazioni analoghe alle controparti a base di Pb.

(2022). Advanced Spectroscopic Investigations of Colloidal Semiconductor Nanostructures for Photon Management and Radiation Detection Schemes. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Advanced Spectroscopic Investigations of Colloidal Semiconductor Nanostructures for Photon Management and Radiation Detection Schemes

ZAFFALON, MATTEO LUCA
2022

Abstract

Le mie attività di ricerca hanno indagato i meccanismi di ricombinazione eccitonici in nanocristalli semiconduttori colloidali (NC), promuovendo lo sviluppo di nuovi paradigmi per la manipolazione delle proprietà ottiche e di scintillazione. Grazie all'ampia gamma di tecniche spettroscopiche e alle preziose collaborazioni intraprese, le mie conclusioni sono state pubblicate in prestigiose riviste scientifiche, contribuendo al progresso della comunità di scienziati dei nanomateriali. La mia ricerca ha trattato principalmente due temi di attuale rilevanza tecnologica: i) l'origine della fotoluminescenza in NC di calcogenuri ternari I-III-VI2 Cd-free come CuInS2 e AgInS2 ii) l'impiego di nanostrutture di perovskiti in schemi di rivelazione e/o conversione in energia di radiazione ionizzante. Nello specifico, l’uso di tecniche spettroscopiche complementari in regime di temperatura controllata ha validato la presenza di sottolivelli intrinseci, con diversa parità, nella banda di valenza di NC stechiometrici di CuInS2 responsabili delle proprietà ottiche di questa classe di NC. I miei risultati, supportati da simulazioni di propagazione Monte Carlo, hanno portato alla fabbricazione di un concentratore solare luminescente - con efficienza record - basato su NC di CuInS2 con taglia ottimale. Lo studio è stato quindi esteso a NC di AgInS2, un materiale meno studiato ad oggi, ma molto promettente per applicazioni di bioimaging grazie all’assenza di elementi tossici. Quindi, ho investigato la rivelazione di radiazione ionizzante attraverso nanostrutture ad alto numero atomico come le perovskiti a base di alogenuri di piombo (LHP), ed in particolare il CsPbBr3. Attraverso lo studio dettagliato delle proprietà di foto- e radio-luminescenza, ho evidenziato gli effetti dell’interazione tra eccitone di bordo banda e stati di difetto shallow/deep in nanostrutture di CsPbBr3 con diversa dimensionalità. Questo studio fondamentale ha offerto una piattaforma per sviluppare nuove strategie sintetiche atte a passivare i siti di intrappolamento sulle superfici degli NC che hanno portato ad un incremento di efficienza di scintillazione del 500%. La stabilità dei NC di CsPbBr3 è stata infine verificata in termini di resistenza alla radiazione gammma fino a dosi estreme di 1 MGy. Inoltre, per estendere la loro applicazione alla radiation detection con dispositivi a guida d’onda, ho studiato la sensibilizzazione di un colorante organico accoppiato a NC di CsPbBr3, realizzando il primo esempio di scintillatore plastico con ampio Stokes-shift e luminescenza veloce basato su LHP. Per superare i limiti imposti dalla presenza di Pb nelle LHP, ho infine esplorato le proprietà ottiche e di scintillazione di nuove classi emergenti di perovskiti doppie green. Le informazioni raccolte incoraggiano il proseguimento di questa linea di ricerca indicando la passivazione superficiale come strategia più promettente per raggiungere prestazioni analoghe alle controparti a base di Pb.
BROVELLI, SERGIO
During my PhD I investigated excitonic recombination mechanisms in colloidal semiconductor nanocrystals (NCs), promoting the development of new paradigms for the manipulation of optical and scintillation properties. Thanks to the wide range of spectroscopic techniques and the valuable collaborations undertaken, my conclusions have been published in prestigious scientific journals, contributing to the advancement of the community of nanomaterials scientists. My research mainly dealt with two topics of current technological importance: i) the origin of photoluminescence in NC of Cd-free ternary I-III-VI2 chalcogenides such as CuInS2 and AgInS2 ii) the use of perovskite nanostructures in detection schemes and/or energy conversion of ionizing radiation. Specifically, the use of complementary spectroscopic techniques in a controlled temperature regime has validated the presence of intrinsic sublevels, with different parity, in the valence band of the stoichiometric CuInS2 NCs responsible for the optical properties of this class of NC. My results, supported by Monte Carlo ray-tracing simulations, led to the fabrication of a luminescent solar concentrator - with record efficiency - based on CuInS2 NCs with optimal size. The study was then extended to AgInS2 NCs, a less investigates material so far, but very promising for bioimaging applications thanks to the absence of toxic elements. Then, I investigated the detection of ionizing radiation through high atomic number nanostructures such as lead halide perovskites (LHP), and in particular CsPbBr3. Through the detailed study of photo- and radio-luminescence properties, I highlighted the effects of the interaction between band edge exciton and shallow/deep defect states in CsPbBr3 nanostructures with different dimensionality. This fundamental study offered a platform to develop novel synthetic strategies to passivate trap sites on NC surfaces that led to a 500% enhancement of scintillation yield. The stability of CsPbBr3 NCs was finally verified in terms of radiation hardness, up to extreme gamma doses of 1 MGy. Furthermore, to extend their application to radiation detection with waveguiding devices, I studied the sensitization of an organic dye coupled to CsPbBr3 NCs, creating the first example of a plastic scintillator with wide Stokes-shift and fast luminescence based on LHP. To overcome the limitations imposed by the presence of Pb in LHPs, I finally explored the optical and scintillation properties of new emerging classes of green double perovskites. The information gathered encourages the continuation of this line of research, indicating surface passivation as the most promising strategy for achieving performance similar to the Pb-based counterparts.
Spettroscopia; Nanocristalli; Perovskiti; Scintillazione; Concetratori solari
Spectroscopy; Nanocrystals; Perovskites; Scintillation; Concetratori solari
FIS/01 - FISICA SPERIMENTALE
English
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
34
2020/2021
(2022). Advanced Spectroscopic Investigations of Colloidal Semiconductor Nanostructures for Photon Management and Radiation Detection Schemes. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_748697.pdf

accesso aperto

Descrizione: Tesi di Zaffalon Matteo Luca - 748697
Tipologia di allegato: Doctoral thesis
Dimensione 37.17 MB
Formato Adobe PDF
37.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/366215
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact