Nuclear Magnetic Resonance (NMR) is one of the most powerful techniques to study chemical and physical properties of materials. In the last years, Low Field (LF) NMR instruments affirmed as a valuable alternative to conduct physical and structural investigation of organic materials. Appropriate adjustment of pulse sequences has allowed to perform relaxometry experiments, phases quantification, determination of crosslinks density and degree of order in many polymeric materials. The dependence of NMR parameters, such as T2 and T1, on the correlation time of fast and slower motions makes them of major importance to study the microscopic dynamics of molecules and polymer chains and the possibility to excite multiple quantum (MQ) transitions permits to quantify residual dipolar couplings (Dres), which can be correlated with the density of constraints. The NMR behavior correlates well with macroscopic properties. In this work, we aimed at showing the applicability of LF Time Domain (TD) NMR to a range of materials with potential industrial interest, to better understand their structure and structure-property relationships. Analysis of water relaxation has been exploited to study the thermogelation process of methylcellulose (MC) solutions. Solvent relaxation times in gel deviates from BPP conditions due to hindered motion. Relaxation acceleration and motional anisotropy are consistent with combined effect of water trapped in the amorphous region of semicrystalline fibrils, and surface solvent relaxation onto the crystalline region. The effect of concentration and Mw of MC chains on relaxation is discussed. MSE measurements in D2O allows the determination of the rigid fraction, which is assigned to both crystalline and interfacial domain, corresponding to 57% of all protons, in accord with expected crystallinity and interfacial part of MC. The determination of this crystallinity degree in MC explains semiflexible behavior of fibrils and gels high moduli. Evolution of relaxation times and rigid fraction of powders from biowaste and their derived films have been interpreted in relation to their composition and addition of plasticizers, to propose a simple method to check the feasibility of a biosource as film forming material and if a certain processing has been effective to improve the filmability. Composition of powders of Kiwifruit, Cocoa Pod Husk and Avocado Peel is determined by CPMAS 13C NMR spectra analyzed with an internally developed, simple algorithm. It works quite well, as assessed by superposition of simulated spectra. Referring to the estimated compositions, interpretation of the thermal evolution of rigid fraction, second moment and mobility of the mobile fraction are made for powders, hydrolyzed films with different acids and after the addition of glycerol or other polymers, obtaining good match with the film cohesion. Water plasticizing effect was estimated on carrot films. High water content reduces the rigid fraction, improving the mobility of amorphous components, in turn increasing flexibility of the films. The domain not affected by humidity was associated to crystalline cellulose, which was calculated to be 29%. Finally, MQ NMR has been applied to specialty polymers to directly obtain their correlation functions and degree of order through Dres calculation. Connecting them with NMR relaxation, rheology, 129Xe NMR, a microscopic interpretation of damping has been given, obtaining that cyanide groups cause higher chain friction, which, accompanied by a wide correlation times distribution, is responsible for high damping showed at high temperature. The addition of CH3 groups increasing free volume and allowing for cooperative motion, reduces friction and thus damping. Vulcanization does not influence the relative damping ability of the compounds, although high crosslinks density can be reached by NBR and NBIR, indicating that good damping abilities are kept also in industrial products.

La Risonanza Magnetica Nucleare (NMR) è una delle tecniche più potenti per studiare proprietà chimiche e fisiche dei materiali. Negli ultimi anni, (LF-)NMR a basso campo si è affermata come una valida alternativa per indagare proprietà fisiche e strutturali di materiali organici. Opportune modifiche alle sequenze di impulsi hanno permesso di eseguire rilassometria, quantificazione di fasi, determinazione della densità di crosslink in molti materiali polimerici. La dipendenza dei parametri NMR, come T2 e T1, dal tempo di correlazione li rende di grande importanza per studiare la dinamica di molecole e catene polimeriche, e la possibilità di eccitare transizioni multiquanto (MQ) permette di ricavare gli accoppiamenti dipolari residui (Dres), che possono essere correlati con la densità di vincoli. Il comportamento NMR si correla bene con le proprietà macroscopiche. Lo scopo di questo lavoro è stato mostrare l'applicabilità di NMR nel dominio del tempo (TD) a basso campo a vari materiali con potenziale interesse industriale, per comprendere meglio la loro struttura e le relazioni struttura-proprietà. L'analisi del rilassamento dell'acqua è stata sfruttata per studiare il processo di termogelazione di soluzioni di metilcellulosa (MC). I tempi di rilassamento del solvente nel gel non rispettano le condizioni BPP a causa di moti vincolati. L'accelerazione del rilassamento e moti anisotropi sono coerenti con l'effetto combinato di acqua intrappolata nella regione amorfa di fibrille semicristalline e rilassamento del solvente alla superficie della regione cristallina. E’ discusso l'effetto della concentrazione e PM delle catene di MC sul rilassamento. MSE in D2O mostra formazione di frazione rigida, assegnata sia al dominio cristallino che interfacciale, corrispondente al 57% di tutti i protoni. La determinazione di questo grado di cristallinità spiega il comportamento semiflessibile delle fibrille e alti moduli dei gel. L'evoluzione dei tempi di rilassamento e della frazione rigida di polveri da rifiuti organici e dai film derivati è stata interpretata in relazione alla composizione e aggiunta di plastificanti, per proporre un metodo semplice per verificare la fattibilità di una fonte biologica come materiale filmogeno e se alcuni processi siano efficaci per migliorare la filmabilità. La composizione di polvere di kiwi, baccello di cacao e buccia di avocado è determinata mediante spettri CPMAS 13C NMR analizzati con un semplice algoritmo sviluppato internamente, valutato grazie alla sovrapposizione di spettri simulati. Riferendosi alle composizioni stimate, è monitorata l'evoluzione termica di frazione rigida, momento secondo e mobilità della frazione mobile di polveri, film idrolizzati con acidi diversi e dopo aggiunta di glicerolo o polimeri, ottenendo correlazioni con la coesione dei film. L'effetto plastificante dell'acqua è studiato su film di carota. Alte quantità d’acqua riducono la frazione rigida, aumentando la mobilità della componente amorfa, e a sua volta la flessibilità dei film. Il dominio non influenzato dall'umidità è stato associato alla cellulosa cristallina, calcolata pari al 29%. Infine, MQ NMR è stata applicata a elastomeri “esotici” per determinare le loro funzioni di correlazione e grado di ordine attraverso il calcolo del Dres. Combinando rilassometria, reologia, 129Xe NMR, è stata data un'interpretazione microscopica dello smorzamento, ottenendo che i gruppi nitrilici causano maggiori attriti, che, accompagnato a un'ampia distribuzione dei tempi di correlazione, sono responsabili dell'elevato damping ad alta temperatura. L'aggiunta di gruppi CH3, aumentando il volume libero e consentendo moti cooperativi, riduce l'attrito e quindi il damping. La vulcanizzazione non influenza il damping relativo delle mescole, anche se NBR e NBIR possono raggiungere densità di reticolazione elevate, indicando che buon damping viene mantenuto anche in prodotti industriali.

(2022). TD-NMR FOR STRUCTURAL AND DYNAMICAL STUDIES OF COMPLEX MACROMOLECULAR MATERIALS. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

TD-NMR FOR STRUCTURAL AND DYNAMICAL STUDIES OF COMPLEX MACROMOLECULAR MATERIALS

BESGHINI, DENISE
2022

Abstract

La Risonanza Magnetica Nucleare (NMR) è una delle tecniche più potenti per studiare proprietà chimiche e fisiche dei materiali. Negli ultimi anni, (LF-)NMR a basso campo si è affermata come una valida alternativa per indagare proprietà fisiche e strutturali di materiali organici. Opportune modifiche alle sequenze di impulsi hanno permesso di eseguire rilassometria, quantificazione di fasi, determinazione della densità di crosslink in molti materiali polimerici. La dipendenza dei parametri NMR, come T2 e T1, dal tempo di correlazione li rende di grande importanza per studiare la dinamica di molecole e catene polimeriche, e la possibilità di eccitare transizioni multiquanto (MQ) permette di ricavare gli accoppiamenti dipolari residui (Dres), che possono essere correlati con la densità di vincoli. Il comportamento NMR si correla bene con le proprietà macroscopiche. Lo scopo di questo lavoro è stato mostrare l'applicabilità di NMR nel dominio del tempo (TD) a basso campo a vari materiali con potenziale interesse industriale, per comprendere meglio la loro struttura e le relazioni struttura-proprietà. L'analisi del rilassamento dell'acqua è stata sfruttata per studiare il processo di termogelazione di soluzioni di metilcellulosa (MC). I tempi di rilassamento del solvente nel gel non rispettano le condizioni BPP a causa di moti vincolati. L'accelerazione del rilassamento e moti anisotropi sono coerenti con l'effetto combinato di acqua intrappolata nella regione amorfa di fibrille semicristalline e rilassamento del solvente alla superficie della regione cristallina. E’ discusso l'effetto della concentrazione e PM delle catene di MC sul rilassamento. MSE in D2O mostra formazione di frazione rigida, assegnata sia al dominio cristallino che interfacciale, corrispondente al 57% di tutti i protoni. La determinazione di questo grado di cristallinità spiega il comportamento semiflessibile delle fibrille e alti moduli dei gel. L'evoluzione dei tempi di rilassamento e della frazione rigida di polveri da rifiuti organici e dai film derivati è stata interpretata in relazione alla composizione e aggiunta di plastificanti, per proporre un metodo semplice per verificare la fattibilità di una fonte biologica come materiale filmogeno e se alcuni processi siano efficaci per migliorare la filmabilità. La composizione di polvere di kiwi, baccello di cacao e buccia di avocado è determinata mediante spettri CPMAS 13C NMR analizzati con un semplice algoritmo sviluppato internamente, valutato grazie alla sovrapposizione di spettri simulati. Riferendosi alle composizioni stimate, è monitorata l'evoluzione termica di frazione rigida, momento secondo e mobilità della frazione mobile di polveri, film idrolizzati con acidi diversi e dopo aggiunta di glicerolo o polimeri, ottenendo correlazioni con la coesione dei film. L'effetto plastificante dell'acqua è studiato su film di carota. Alte quantità d’acqua riducono la frazione rigida, aumentando la mobilità della componente amorfa, e a sua volta la flessibilità dei film. Il dominio non influenzato dall'umidità è stato associato alla cellulosa cristallina, calcolata pari al 29%. Infine, MQ NMR è stata applicata a elastomeri “esotici” per determinare le loro funzioni di correlazione e grado di ordine attraverso il calcolo del Dres. Combinando rilassometria, reologia, 129Xe NMR, è stata data un'interpretazione microscopica dello smorzamento, ottenendo che i gruppi nitrilici causano maggiori attriti, che, accompagnato a un'ampia distribuzione dei tempi di correlazione, sono responsabili dell'elevato damping ad alta temperatura. L'aggiunta di gruppi CH3, aumentando il volume libero e consentendo moti cooperativi, riduce l'attrito e quindi il damping. La vulcanizzazione non influenza il damping relativo delle mescole, anche se NBR e NBIR possono raggiungere densità di reticolazione elevate, indicando che buon damping viene mantenuto anche in prodotti industriali.
SIMONUTTI, ROBERTO
D'ONOFRIO, PASQUALE
Nuclear Magnetic Resonance (NMR) is one of the most powerful techniques to study chemical and physical properties of materials. In the last years, Low Field (LF) NMR instruments affirmed as a valuable alternative to conduct physical and structural investigation of organic materials. Appropriate adjustment of pulse sequences has allowed to perform relaxometry experiments, phases quantification, determination of crosslinks density and degree of order in many polymeric materials. The dependence of NMR parameters, such as T2 and T1, on the correlation time of fast and slower motions makes them of major importance to study the microscopic dynamics of molecules and polymer chains and the possibility to excite multiple quantum (MQ) transitions permits to quantify residual dipolar couplings (Dres), which can be correlated with the density of constraints. The NMR behavior correlates well with macroscopic properties. In this work, we aimed at showing the applicability of LF Time Domain (TD) NMR to a range of materials with potential industrial interest, to better understand their structure and structure-property relationships. Analysis of water relaxation has been exploited to study the thermogelation process of methylcellulose (MC) solutions. Solvent relaxation times in gel deviates from BPP conditions due to hindered motion. Relaxation acceleration and motional anisotropy are consistent with combined effect of water trapped in the amorphous region of semicrystalline fibrils, and surface solvent relaxation onto the crystalline region. The effect of concentration and Mw of MC chains on relaxation is discussed. MSE measurements in D2O allows the determination of the rigid fraction, which is assigned to both crystalline and interfacial domain, corresponding to 57% of all protons, in accord with expected crystallinity and interfacial part of MC. The determination of this crystallinity degree in MC explains semiflexible behavior of fibrils and gels high moduli. Evolution of relaxation times and rigid fraction of powders from biowaste and their derived films have been interpreted in relation to their composition and addition of plasticizers, to propose a simple method to check the feasibility of a biosource as film forming material and if a certain processing has been effective to improve the filmability. Composition of powders of Kiwifruit, Cocoa Pod Husk and Avocado Peel is determined by CPMAS 13C NMR spectra analyzed with an internally developed, simple algorithm. It works quite well, as assessed by superposition of simulated spectra. Referring to the estimated compositions, interpretation of the thermal evolution of rigid fraction, second moment and mobility of the mobile fraction are made for powders, hydrolyzed films with different acids and after the addition of glycerol or other polymers, obtaining good match with the film cohesion. Water plasticizing effect was estimated on carrot films. High water content reduces the rigid fraction, improving the mobility of amorphous components, in turn increasing flexibility of the films. The domain not affected by humidity was associated to crystalline cellulose, which was calculated to be 29%. Finally, MQ NMR has been applied to specialty polymers to directly obtain their correlation functions and degree of order through Dres calculation. Connecting them with NMR relaxation, rheology, 129Xe NMR, a microscopic interpretation of damping has been given, obtaining that cyanide groups cause higher chain friction, which, accompanied by a wide correlation times distribution, is responsible for high damping showed at high temperature. The addition of CH3 groups increasing free volume and allowing for cooperative motion, reduces friction and thus damping. Vulcanization does not influence the relative damping ability of the compounds, although high crosslinks density can be reached by NBR and NBIR, indicating that good damping abilities are kept also in industrial products.
Polimeri; TD-NMR; Rilassometria; NMR Multiquanto; Elastomeri
Polymers; TD-NMR; Relaxometry; Multiple Quantum NMR; Elastomeri
CHIM/05 - SCIENZA E TECNOLOGIA DEI MATERIALI POLIMERICI
English
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
34
2020/2021
(2022). TD-NMR FOR STRUCTURAL AND DYNAMICAL STUDIES OF COMPLEX MACROMOLECULAR MATERIALS. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_762347.pdf

embargo fino al 17/02/2025

Descrizione: Tesi di Besghini Denise-762347
Tipologia di allegato: Doctoral thesis
Dimensione 6.79 MB
Formato Adobe PDF
6.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/366147
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact