Actinomycetes and Fungi are frequently organized in small integrated societies (exemplified by colonies) in which a division of labor occurs. The division of labor has the evolutionary outcome of giving a selective advantage to the growing cells and finally to the fertile progeny. The fertile progeny has the task to preserve the species within the limits of natural evolution and colonization of new niches. A considerable part of the population assembled in a fungus or actinomycete colony (up to 80%) is fated to dye since it cannot embed its genome in spores. We have suggested that, in natural microbial isolates, a common characteristic is to segregate phenotypes in which the production of secondary metabolites and enzymes is maximized in the part of the colony which has lost the capacity to reproduce itself (the sterile caste), while reproduction is delegated to another part of the population (the non-sterile caste, generally represented by spores or other durable cells). Based on the above statements, we were digging in the sterile caste having as goal the identification, characterization and long-term preservation of industrially relevant lineages. In mycelial and polynuclear microorganisms, as fungi and actinomycetes are, simple replication of colonies, or plating by dilution, did not easily allow the separation of genomes. Therefore, to correctly separate the lineages of interest, we have approached the selection of the sterile caste by use of three different techniques: morphological selection of those phenotypes having lost the spore-producing ability (study performed on fungi and actinomycetes), the selection of the sterile caste by use of selective agents (applied to fungi and actinomycetes) and the separation of genomes by massive screening of clones produced with the protoplast technique. More in detail, we used the antibiotic A40926 as selective agent for the identification of high producers of the A40926 glycopeptide (the natural precursor of the clinically relevant Dalbavancin antibiotic). The producer strain, Nonomuraea gerenzanensis ATCC 39727, displayed the presence of two distinct populations which were selected by the A40926 antibiotic. The G population was able to produce twice the A40926 amount in respect of the P population. The G population gave an incomparable industrial advantage. In the identification of high producers of Teicoplanin (the clinically relevant glycopeptide commercially known as Targocid) in Actinoplanes teichomyceticus ATCC 31121, we separated the genomes by use of the protoplast technology, and we performed a massive screening of the resulting clonal populations. In this case, we uncovered both high producers and producers of alternative Teicoplanin antibiotic complexes. In the producer of the glycopeptide Avoparcin, Amycolatopsis coloradensis ATCC 53629, we were able to select high producers based on the identification of different non-spore producing colony morphologies and at the same time we were able to uncover biosynthetic dark matter hidden within the genome of the strain. Indeed, the selected morphological variants of this strain, were both able to produce Avoparcin up to a 9 g/L level and to produce an alternative Avoparcin complex with novel and up-to-date unidentified Avoparcin analogues. Our studies evidenced that the incidence of mutants/variants for the specific traits analyzed (production of enzymes and secondary metabolites) was above any expected random mutation result.

Gli attinomiceti ed i funghi sono spesso organizzati in piccole società integrate (esemplificate da colonie) caratterizzate da una divisione del lavoro. La divisione del lavoro ha il riscontro evolutivo di dare un vantaggio selettivo alle cellule in accrescimento ed in ultima analisi alla progenie fertile. La progenie fertile ha il compito di preservare la specie nei limiti dell'evoluzione naturale e della colonizzazione di nuove nicchie. Una parte considerevole della popolazione riunita in una colonia di funghi o di actinomiceti (fino all'80%) è destinata a soccombere poiché non può incorporare il proprio genoma nelle spore. Abbiamo suggerito che, partendo da isolati microbici naturali, una caratteristica comune di funghi e batteri filamentosi è quella di segregare fenotipi in cui la produzione di metaboliti secondari ed enzimi è massimizzata in una parte della colonia che ha perso la capacità di riprodursi (la casta sterile), mentre la riproduzione è delegata ad un'altra parte della popolazione (la casta non sterile, generalmente rappresentata da spore o altre cellule durevoli). Sulla base di quanto sopra, abbiamo rivolto i nostri sforzi alla casta sterile avendo come obiettivo l'identificazione, la caratterizzazione e la conservazione a lungo termine di popolazioni clonali industrialmente rilevanti. Tuttavia, nei microrganismi miceliari e polinucleati, come i funghi e gli attinomiceti, la semplice replicazione delle colonie o l’isolamento per diluizione, non consentono la efficace separazione dei genomi. Al fine di separare correttamente le popolazioni clonali d’interesse, ci siamo dedicati alla selezione della casta sterile mediante l'utilizzo di tre diverse tecniche: selezione morfologica di quei fenotipi che hanno perso la capacità di produrre spore (studio eseguito su funghi e attinomiceti e su Bacillus subtilis), la selezione della casta sterile mediante l'utilizzo di agenti selettivi (applicato a funghi ed attinomiceti) e la separazione dei genomi mediante screening massivo di cloni prodotti con la tecnica dei protoplasti. Più in dettaglio, abbiamo utilizzato l'antibiotico A40926 come agente selettivo per l'identificazione di altoproduttori di A40926 (il precursore naturale del glicopeptide clinicamente rilevante Dalbavancina). Il ceppo produttore, Nonomuraea gerenzanensis ATCC 39727, ha mostrato la presenza di due distinte popolazioni che sono state selezionate in presenza di concentrazioni di A40926 sub-inibenti. La popolazione identificata come G è stata in grado di produrre il doppio di A40926 rispetto alla popolazione P. La popolazione G ha quindi mostrato un incomparabile vantaggio produttivo sfruttabile industrialmente. Nell'identificazione degli altoproduttori di Teicoplanina (il glicopeptide clinicamente rilevante commercialmente noto come Targocid) in Actinoplanes teichomyceticus ATCC 31121, sono stati separati differenti fenotipi, grazie alla separazione dei genomi compiuta con l’utilizzo di protoplasti. Uno screening massiccio delle popolazioni clonali risultanti ha permesso di identificare sia altoproduttori che produttori di differenti complex di Teicoplanina. Nel produttore del glicopeptide Avoparcina, Amycolatopsis coloradensis ATCC 53629, siamo stati in grado di selezionare altoproduttori sulla base della identificazione di differenti morfologie incapaci di produrre spore. Contemporaneamente, siamo stati in grado di scoprire “materia oscura biosintetica” nascosta all'interno del genoma del ceppo. Le varianti morfologiche selezionate in questo ceppo sono infatti state in grado di produrre fino a 9 g/L di Avoparcina e di produrre degli analoghi dell’Avoparcina fino ad ora non identificati. I nostri studi hanno evidenziato che l'incidenza di mutanti/varianti per i tratti specifici analizzati (produzione di enzimi e metaboliti secondari) era al di sopra di qualsiasi incidenza di mutazione casuale attesa.

(2022). The division of labor in microorganisms: from survival strategies of the species to industrial success stories. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

The division of labor in microorganisms: from survival strategies of the species to industrial success stories

BELTRAMETTI, FABRIZIO
2022

Abstract

Gli attinomiceti ed i funghi sono spesso organizzati in piccole società integrate (esemplificate da colonie) caratterizzate da una divisione del lavoro. La divisione del lavoro ha il riscontro evolutivo di dare un vantaggio selettivo alle cellule in accrescimento ed in ultima analisi alla progenie fertile. La progenie fertile ha il compito di preservare la specie nei limiti dell'evoluzione naturale e della colonizzazione di nuove nicchie. Una parte considerevole della popolazione riunita in una colonia di funghi o di actinomiceti (fino all'80%) è destinata a soccombere poiché non può incorporare il proprio genoma nelle spore. Abbiamo suggerito che, partendo da isolati microbici naturali, una caratteristica comune di funghi e batteri filamentosi è quella di segregare fenotipi in cui la produzione di metaboliti secondari ed enzimi è massimizzata in una parte della colonia che ha perso la capacità di riprodursi (la casta sterile), mentre la riproduzione è delegata ad un'altra parte della popolazione (la casta non sterile, generalmente rappresentata da spore o altre cellule durevoli). Sulla base di quanto sopra, abbiamo rivolto i nostri sforzi alla casta sterile avendo come obiettivo l'identificazione, la caratterizzazione e la conservazione a lungo termine di popolazioni clonali industrialmente rilevanti. Tuttavia, nei microrganismi miceliari e polinucleati, come i funghi e gli attinomiceti, la semplice replicazione delle colonie o l’isolamento per diluizione, non consentono la efficace separazione dei genomi. Al fine di separare correttamente le popolazioni clonali d’interesse, ci siamo dedicati alla selezione della casta sterile mediante l'utilizzo di tre diverse tecniche: selezione morfologica di quei fenotipi che hanno perso la capacità di produrre spore (studio eseguito su funghi e attinomiceti e su Bacillus subtilis), la selezione della casta sterile mediante l'utilizzo di agenti selettivi (applicato a funghi ed attinomiceti) e la separazione dei genomi mediante screening massivo di cloni prodotti con la tecnica dei protoplasti. Più in dettaglio, abbiamo utilizzato l'antibiotico A40926 come agente selettivo per l'identificazione di altoproduttori di A40926 (il precursore naturale del glicopeptide clinicamente rilevante Dalbavancina). Il ceppo produttore, Nonomuraea gerenzanensis ATCC 39727, ha mostrato la presenza di due distinte popolazioni che sono state selezionate in presenza di concentrazioni di A40926 sub-inibenti. La popolazione identificata come G è stata in grado di produrre il doppio di A40926 rispetto alla popolazione P. La popolazione G ha quindi mostrato un incomparabile vantaggio produttivo sfruttabile industrialmente. Nell'identificazione degli altoproduttori di Teicoplanina (il glicopeptide clinicamente rilevante commercialmente noto come Targocid) in Actinoplanes teichomyceticus ATCC 31121, sono stati separati differenti fenotipi, grazie alla separazione dei genomi compiuta con l’utilizzo di protoplasti. Uno screening massiccio delle popolazioni clonali risultanti ha permesso di identificare sia altoproduttori che produttori di differenti complex di Teicoplanina. Nel produttore del glicopeptide Avoparcina, Amycolatopsis coloradensis ATCC 53629, siamo stati in grado di selezionare altoproduttori sulla base della identificazione di differenti morfologie incapaci di produrre spore. Contemporaneamente, siamo stati in grado di scoprire “materia oscura biosintetica” nascosta all'interno del genoma del ceppo. Le varianti morfologiche selezionate in questo ceppo sono infatti state in grado di produrre fino a 9 g/L di Avoparcina e di produrre degli analoghi dell’Avoparcina fino ad ora non identificati. I nostri studi hanno evidenziato che l'incidenza di mutanti/varianti per i tratti specifici analizzati (produzione di enzimi e metaboliti secondari) era al di sopra di qualsiasi incidenza di mutazione casuale attesa.
BRANDUARDI, PAOLA
Actinomycetes and Fungi are frequently organized in small integrated societies (exemplified by colonies) in which a division of labor occurs. The division of labor has the evolutionary outcome of giving a selective advantage to the growing cells and finally to the fertile progeny. The fertile progeny has the task to preserve the species within the limits of natural evolution and colonization of new niches. A considerable part of the population assembled in a fungus or actinomycete colony (up to 80%) is fated to dye since it cannot embed its genome in spores. We have suggested that, in natural microbial isolates, a common characteristic is to segregate phenotypes in which the production of secondary metabolites and enzymes is maximized in the part of the colony which has lost the capacity to reproduce itself (the sterile caste), while reproduction is delegated to another part of the population (the non-sterile caste, generally represented by spores or other durable cells). Based on the above statements, we were digging in the sterile caste having as goal the identification, characterization and long-term preservation of industrially relevant lineages. In mycelial and polynuclear microorganisms, as fungi and actinomycetes are, simple replication of colonies, or plating by dilution, did not easily allow the separation of genomes. Therefore, to correctly separate the lineages of interest, we have approached the selection of the sterile caste by use of three different techniques: morphological selection of those phenotypes having lost the spore-producing ability (study performed on fungi and actinomycetes), the selection of the sterile caste by use of selective agents (applied to fungi and actinomycetes) and the separation of genomes by massive screening of clones produced with the protoplast technique. More in detail, we used the antibiotic A40926 as selective agent for the identification of high producers of the A40926 glycopeptide (the natural precursor of the clinically relevant Dalbavancin antibiotic). The producer strain, Nonomuraea gerenzanensis ATCC 39727, displayed the presence of two distinct populations which were selected by the A40926 antibiotic. The G population was able to produce twice the A40926 amount in respect of the P population. The G population gave an incomparable industrial advantage. In the identification of high producers of Teicoplanin (the clinically relevant glycopeptide commercially known as Targocid) in Actinoplanes teichomyceticus ATCC 31121, we separated the genomes by use of the protoplast technology, and we performed a massive screening of the resulting clonal populations. In this case, we uncovered both high producers and producers of alternative Teicoplanin antibiotic complexes. In the producer of the glycopeptide Avoparcin, Amycolatopsis coloradensis ATCC 53629, we were able to select high producers based on the identification of different non-spore producing colony morphologies and at the same time we were able to uncover biosynthetic dark matter hidden within the genome of the strain. Indeed, the selected morphological variants of this strain, were both able to produce Avoparcin up to a 9 g/L level and to produce an alternative Avoparcin complex with novel and up-to-date unidentified Avoparcin analogues. Our studies evidenced that the incidence of mutants/variants for the specific traits analyzed (production of enzymes and secondary metabolites) was above any expected random mutation result.
strain improvement; strain maintenance; division of labor; actinomycetes; glycopeptides
miglioramento ceppi; mantenimento ceppi; divisione del lavoro; attinomiceti; glycopeptides
BIO/19 - MICROBIOLOGIA GENERALE
English
TECNOLOGIE CONVERGENTI PER I SISTEMI BIOMOLECOLARI (TeCSBi)
34
2020/2021
(2022). The division of labor in microorganisms: from survival strategies of the species to industrial success stories. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_848889.pdf

accesso aperto

Descrizione: The division of labor in microorganisms: from survival strategies of the species to industrial success stories
Tipologia di allegato: Doctoral thesis
Dimensione 11.51 MB
Formato Adobe PDF
11.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/365498
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact